
�
������
� ����� ��������
	�� ������������

User’s Guide

1997 Digital Signal Processing Solutions

Printed in U.S.A., January 1997
D426029-9761 revision*

SPRU224

19
97

Guide
User’s

� ����� ��������
�
������

	�� ������������

TMS320C6x
C Source Debugger

User’s Guide

For SPARCstations

Preliminary

Literature Number: SPRU224
Manufacturing Part Number: D426029-9761 revision *

January 1997

Printed on Recycled Paper

Running Title—Attribute Reference

ii

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1997, Texas Instruments Incorporated

iii Read This First

Preface

Read This First

What Is This Book About?

This book tells you how to use the TMS320C6x C source debugger with the
simulator.

There are two debugger environments: the basic debugger environment and
the profiling environment. The basic debugger environment is a general-pur-
pose debugging environment. The profiling environment is a special environ-
ment for collecting statistics about code execution.

Before you use this book, you should use the appropriate installation guide to
install the C source debugger and any necessary hardware.

How to Use This Manual

The goal of this book is to help you learn to use the Texas Instruments standard
programmer’s interface for debugging. This book is divided into three parts:

� Part I: Hands-On Information is presented first so that you can start
using your debugger the same day you receive it.

� Chapter 1 lists the key features of the debugger, describes additional
’C6x software tools, tells you how to prepare a ’C6x program for de-
bugging, and provides instructions and options for invoking the de-
bugger.

� Chapter 2 is a tutorial that introduces you to many of the debugger fea-
tures.

� Part II: Debugger Description contains detailed information about using
the debugger.

The chapters in Part II detail the individual topics that are introduced in the
tutorial. For example, Chapter 3 describes all of the debugger’s windows
and tells you how to move and size them; Chapter 4 describes everything
you need to know about entering commands.

How to Use This Manual

iv

� Part III: Reference Material provides supplementary information.

� Chapter 11 gives a complete summary of all the tasks introduced in
Parts I and II. This includes a functional and an alphabetical summary
of the debugger commands and a topical summary of function key ac-
tions.

� Chapter 12 provides information about C expressions. The debugger
commands are powerful because they accept C expressions as
parameters; however, you can also use the debugger to debug as-
sembly language programs. The information about C expressions
aids assembly language programmers who are unfamiliar with C.

� Part III also includes a glossary and an index.

The way you use this book depends on your experience with similar products.
As with any book, it would be best for you to begin on page 1 and read to the
end. Because most people don’t read technical manuals from cover to cover,
here are some suggestions for choosing what to read.

� If you have used TI development tools or other debuggers before, you may
want to:

� Read the introductory material in Chapter 1.

� Complete the tutorial in Chapter 2.

� Read the alphabetical command reference in Chapter 11.

� If this is the first time that you have used a debugger or similar tool, you
may want to:

� Read the introductory material in Chapter 1.

� Complete the tutorial in Chapter 2.

� Read all of the chapters in Part II.

 Notational Conventions

v Read This First

Notational Conventions

This document uses the following conventions.

� The TMS320C6x family of devices is referred to as ’C6x.

� The C source debugger has a very flexible command-entry system; there
are usually a variety of ways to perform any specific action. For example,
you may be able to perform the same action by typing in a command, using
the mouse, or using function keys. This document uses three symbols to
identify the methods that you can use to perform an action:

Symbol Description

Identifies an action that you perform by using the mouse

Identifies an action that you perform by using function keys

Identifies an action that you perform by typing in a command

� The following symbols identify mouse actions. For simplicity, these sym-
bols represent a mouse with two buttons. However, you can use a mouse
with only one button or a mouse with more than two buttons.

Symbol Action

Point. Without pressing a mouse button, move the mouse to
point the cursor at a window or field on the display. (Note that
the mouse cursor displayed on the screen is not shaped like an
arrow; it’s shaped like a block.)

Press and hold. Press a mouse button. If your mouse has only
one button, press it. If your mouse has more than one button,
press the left button.

Release. Release the mouse button that you pressed.

Click. Press a mouse button and, without moving the mouse,
release the button.

Drag. While pressing the left mouse button, move the mouse.

� Debugger commands are not case sensitive; you can enter them in lower-
case, uppercase, or a combination. To emphasize this fact, commands are
shown throughout this user’s guide in both uppercase and lowercase.

Notational Conventions

vi

� Program listings and examples, interactive displays, and window contents
are shown in a special font. Some examples use a bold version to identify
code, commands, or portions of an example that you enter. Here is an
example:

Command Result displayed in the COMMAND window

whatis aai int aai[10][5];

whatis xxx struct xxx {
int a;
int b;
int c;
int f1 : 2;
int f2 : 4;
struct xxx *f3;
int f4[10];

}

In this example, the left column identifies debugger commands that you
type in. The right column identifies the result that the debugger displays in
the display area of the COMMAND window.

� In syntax descriptions, the instruction or command is in a bold face font,
and parameters are in italics. Portions of a syntax that are in bold face
should be entered as shown; portions of a syntax that are in italics
describe the kind of information to be entered. Here is an example of a
command syntax:

load object filename

load is the command. This command has one required parameter, indi-
cated by object filename.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of a command
that has an optional parameter:

run [expression]

The RUN command has one parameter, expression, which is optional.

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

sound {on | off }

This provides two choices: sound on or sound off .

Unless the list is enclosed in square brackets, you must choose one item
from the list.

 Related Documentation From Texas Instruments

vii Read This First

Related Documentation From Texas Instruments

The following books describe the TMS320C6x DSPs and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477–8924. When ordering, please
identify the book by its title and literature number.

TMS320C6x Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the ’C6x generation of devices.

TMS320C6x Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the ’C6x C compiler. This C compiler accepts ANSI
standard C source code and produces assembly language source code
for the ’C6x generation of devices. This book also describes the
assembly optimizer, which helps you optimize your assembly code.

TMS320C6x Software Tools Getting Started Guide (literature number
SPRU185) describes how to install the TMS320C6x assembly language
tools, the C compiler, the simulator, and the C source debugger. Installa-
tion instructions for SunOS , Solaris , Windows 95, and Windows
NT systems are given.

TMS320C62xx CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the ’C62xx CPU architecture, instruction
set, pipeline, and interrupts for the TMS320C62xx digital signal proces-
sors.

TMS320C62xx Peripherals Reference Guide (literature number SPRU190)
describes common peripherals available on the TMS320C62xx digital
signal processors. This book includes information on the internal data
and program memories, the external memory interface (EMIF), the host
port, serial ports, direct memory access (DMA), clocking and phase-
locked loop (PLL), and the power-down modes.

TMS320C62xx Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code and includes applica-
tion program examples.

TMS320C62xx Technical Brief (literature number SPRU197) gives an
introduction to the ’C62xx digital signal processor, development tools,
and third-party support.

Related Documentation / Trademarks

viii

Related Documentation

If you are an assembly language programmer and would like more information
about C or C expressions, you may find these books useful:

American National Standard for Information Systems—Programming
Language C X3.159-1989 , American National Standards Institute
(ANSI standard for C)

Programming in C , Kochan, Steve G., Hayden Book Company

The C Programming Language (second edition, 1988), by Brian W. Kernig-
han and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs,
New Jersey

Trademarks

OpenWindows, Solaris, and SunOS are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

X Window System is a trademark of the Massachusetts Institute of Technolo-
gy.

 If You Need Assistance

ix Read This First

If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/mirrors/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: comments@books.sc.ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

x

 Contents

xi

Contents

Part I: Hands-On Information

1 Overview of a Code Development and Debugging System 1-1.
Discusses features of the debugger, describes additional software tools, and tells you how to
invoke the debugger.

1.1 Description of the C Source Debugger 1-2.
Key features of the debugger 1-3.

1.2 Description of the Profiling Environment 1-5.
Key features of the profiling environment 1-5.

1.3 Developing Code for the TMS320C6x 1-7.
1.4 Preparing Your Program for Debugging 1-10.
1.5 Invoking the Debugger 1-12.

Selecting the screen size (–b, –bb options) 1-13.
Clearing the .bss section (–c option) 1-13.
Displaying the debugger on a different machine (–d option) 1-13.
Identifying additional directories (–i option) 1-14.
Selecting the minimal debugging mode (–min option) 1-14.
Entering the profiling environment (–profile option) 1-14.
Loading the symbol table only (–s option) 1-14.
Identifying a new initialization file (–t option) 1-15.
Loading without the symbol table (–v option) 1-15.
Ignoring D_OPTIONS (–x option) 1-15.

1.6 Exiting the Debugger 1-15.
1.7 Debugging Your Programs 1-16.

2 An Introductory Tutorial to the C Source Debugger 2-1.
This chapter provides a step-by-step introduction to the debugger and its features.

How to use this tutorial 2-2.
A note about entering commands 2-2.
An escape route (just in case) 2-3.
Invoke the debugger and load the sample program’s object code 2-3.
Take a look at the display 2-4.
What’s in the DISASSEMBLY window? 2-5.
Select the active window 2-5.
Resize the active window 2-7.

Contents

xii

Zoom the active window 2-8.
Move the active window 2-9.
Scroll through a window’s contents 2-10.
Display the C source version of the sample file 2-11.
Execute some code 2-12.
Become familiar with the four debugging modes 2-12.
Open another text file, then redisplay a C source file 2-15.
Use the basic RUN command 2-16.
Set some breakpoints 2-16.
Watch some values and single-step through code 2-18.
Run code conditionally 2-20.
WHATIS that? 2-21.
Clear the COMMAND window display area 2-22.
Display the contents of an aggregate data type 2-22.
Display data in another format 2-25.
Change some values 2-28.
Define a memory map 2-29.
Define your own command string 2-30.
Close the debugger 2-30.

Part II: Debugger Description

3 The Debugger Display 3-1.
Describes the default displays, tells you how to switch between assembly language and C
debugging, describes the various types of windows on the display, and tells you how to move
and size the windows.

3.1 Debugging Modes and Default Displays 3-2.
Auto mode 3-2.
Assembly mode 3-4.
Mixed mode 3-4.
Minimal mode 3-5.
Restrictions associated with debugging modes 3-5.

3.2 Descriptions of the Different Kinds of Windows and Their Contents 3-6.
COMMAND window 3-7.
DISASSEMBLY window 3-8.
FILE window 3-9.
CALLS window 3-10.
PROFILE window 3-12.
MEMORY windows 3-13.
CPU window 3-16.
DISP windows 3-17.
WATCH windows 3-18.

3.3 Cursors 3-20.

 Contents

xiii Contents

3.4 The Active Window 3-21.
Identifying the active window 3-21.
Selecting the active window 3-22.

3.5 Manipulating a Window 3-24.
Resizing a window 3-24.
Zooming a window 3-26.
Moving a window 3-27.

3.6 Manipulating a Window’s Contents 3-29.
Scrolling through a window’s contents 3-29.
Editing the data displayed in windows 3-31.

3.7 Closing a Window 3-32.

4 Entering and Using Commands 4-1.
Describes the rules for entering commands from the command line, tells you how to use the
pulldown menus and dialog boxes (for entering parameter values), and describes general
information about entering commands from batch files.
4.1 Entering Commands From the Command Line 4-2.

Typing in and entering commands 4-3.
Sometimes, you can’t type a command 4-4.
Using the command history 4-5.
Clearing the display area 4-5.
Recording information from the display area 4-6.

4.2 Using the Menu Bar and the Pulldown Menus 4-7.
Pulldown menus in the profiling environment 4-8.
Using the pulldown menus 4-8.
Escaping from the pulldown menus 4-9.
Using menu bar selections that don’t have pulldown menus 4-10.

4.3 Using Dialog Boxes 4-11.
Entering text in a dialog box 4-11.

4.4 Entering Commands From a Batch File 4-13.
Echoing strings in a batch file 4-14.
Controlling command execution in a batch file 4-14.

4.5 Defining Your Own Command Strings 4-17.

5 Defining a Memory Map 5-1.
Contains instructions for setting up a memory map that enables the debugger to correctly
access target memory and includes hints about using batch files.
5.1 The Memory Map: What It Is and Why You Must Define It 5-2.

Defining the memory map in a batch file 5-2.
Potential memory map problems 5-3.

5.2 A Sample Memory Map 5-4.
5.3 Identifying Usable Memory Ranges 5-5.

Memory mapping with the simulator 5-6.
5.4 Enabling Memory Mapping 5-8.
5.5 Checking the Memory Map 5-9.
5.6 Modifying the Memory Map During a Debugging Session 5-10.

Returning to the original memory map 5-10.

Contents

xiv

6 Loading, Displaying, and Running Code 6-1.
Tells you how to use the three debugger modes to view the type of source files that you’d like
to see, how to load source files and object files, how to run your programs, and how to halt
program execution.

6.1 Code-Display Windows: Viewing Assembly Language Code, C Code, or Both 6-2.
Selecting a debugging mode 6-3.

6.2 Displaying Your Source Programs (or Other Text Files) 6-4.
Displaying assembly language code 6-4.
Displaying C code 6-6.
Displaying other text files 6-7.

6.3 Loading Object Code 6-8.
Loading code while invoking the debugger 6-8.
Loading code after invoking the debugger 6-8.

6.4 Where the Debugger Looks for Source Files 6-9.
6.5 Running Your Programs 6-10.

Defining the starting point for program execution 6-10.
Running code 6-11.
Single-stepping through code 6-12.
Running code while disconnected from the target system 6-14.
Running code conditionally 6-14.

6.6 Halting Program Execution 6-15.

7 Managing Data 7-1.
Describes the data-display windows and tells you how to edit data (memory contents, register
contents, and individual variables).

7.1 Where Data Is Displayed 7-2.
7.2 Basic Commands for Managing Data 7-2.
7.3 Basic Methods for Changing Data Values 7-4.

Editing data displayed in a window 7-4.
Advanced “editing”—using expressions with side effects 7-5.

7.4 Managing Data in Memory 7-6.
Displaying memory contents 7-6.
Displaying memory contents while you’re debugging C 7-8.
Saving memory values to a file 7-9.
Filling a block of memory 7-9.

7.5 Managing Register Data 7-10.
Displaying register contents 7-10.

7.6 Managing Data in a DISP (Display) Window 7-11.
Displaying data in a DISP window 7-11.
Closing a DISP window 7-13.

7.7 Managing Data in a WATCH Window 7-14.
Displaying data in the WATCH window 7-15.
Deleting watched values and closing the WATCH window 7-16.

7.8 Displaying Data in Alternative Formats 7-17.
Changing the default format for specific data types 7-17.
Changing the default format with ?, MEM, DISP, and WA 7-19.

 Contents

xv Contents

8 Using Software Breakpoints 8-1.
Describes the use of software breakpoints to halt code execution.
8.1 Setting a Software Breakpoint 8-2.
8.2 Clearing a Software Breakpoint 8-4.
8.3 Finding the Software Breakpoints That Are Set 8-5.

9 Customizing the Debugger Display 9-1.
Contains information about the commands that you can use for customizing the display and
identifies the display areas that you can modify.
9.1 Changing the Colors of the Debugger Display 9-2.

Area names: common display areas 9-3.
Area names: window borders 9-4.
Area names: COMMAND window 9-4.
Area names: DISASSEMBLY and FILE windows 9-5.
Area names: data-display windows 9-6.
Area names: menu bar and pulldown menus 9-7.

9.2 Changing the Border Styles of the Windows 9-8.
9.3 Saving and Using Custom Displays 9-9.

Changing the default display for monochrome monitors 9-9.
Saving a custom display 9-10.
Loading a custom display 9-10.
Invoking the debugger with a custom display 9-11.
Returning to the default display 9-11.

9.4 Changing the Prompt 9-12.

10 Profiling Code Execution 10-1.
Describes the profiling environment and tells you how to collect statistics about code execution.
10.1 An Overview of the Profiling Process 10-2.

A profiling strategy 10-2.
10.2 Entering the Profiling Environment 10-3.

Restrictions of the profiling environment 10-3.
Using pulldown menus in the profiling environment 10-4.

10.3 Defining Areas for Profiling 10-5.
Marking an area 10-5.
Disabling an area 10-7.
Reenabling a disabled area 10-10.
Unmarking an area 10-11.
Restrictions on profiling areas 10-12.

10.4 Defining a Stopping Point 10-13.
10.5 Running a Profiling Session 10-15.
10.6 Viewing Profile Data 10-17.

Viewing different profile data 10-17.
Data accuracy 10-19.
Sorting profile data 10-19.
Viewing different profile areas 10-19.
Interpreting session data 10-20.
Viewing code associated with a profile area 10-21.

10.7 Saving Profile Data to a File 10-22.

Contents

xvi

Part III: Reference Material

11 Summary of Commands and Special Keys 11-1.
Provides a functional summary of the debugger commands, profiling commands, and function
keys; also provides a complete alphabetical summary of all commands.
11.1 Functional Summary of Debugger Commands 11-2.

Changing modes 11-3.
Managing windows 11-3.
Displaying and changing data 11-3.
Performing system tasks 11-4.
Managing breakpoints 11-4.
Displaying files and loading programs 11-5.
Customizing the screen 11-5.
Memory mapping 11-5.
Running programs 11-6.
Profiling commands 11-7.

11.2 How the Menu Selections Correspond to Commands 11-8.
Program-execution commands 11-8.
File/load commands 11-8.
Breakpoint commands 11-8.
Watch commands 11-9.
Memory commands 11-9.
Screen-configuration commands 11-9.
Mode commands 11-9.

11.3 Alphabetical Summary of Debugger Commands 11-10.
11.4 Summary of Profiling Commands 11-46.
11.5 Summary of Special Keys 11-50.

Editing text on the command line 11-50.
Using the command history 11-50.
Switching modes 11-51.
Halting or escaping from an action 11-51.
Displaying pulldown menus 11-51.
Running code 11-52.
Selecting or closing a window 11-52.
Moving or sizing a window 11-52.
Scrolling a window’s contents 11-53.
Editing data or selecting the active field 11-54.

12 Basic Information About C Expressions 12-1.
Many of the debugger commands accept C expressions as parameters. This chapter provides
general information about the rules governing C expressions and describes specific
implementation features related to using C expressions as command parameters.
12.1 C Expressions for Assembly Language Programmers 12-2.
12.2 Using Expression Analysis in the Debugger 12-4.

Restrictions 12-4.
Additional features 12-4.

 Contents

xvii Contents

A What the Debugger Does During Invocation A-1.
In some circumstances, you may find it helpful to know the steps that the debugger goes
through during the invocation process; this appendix lists these steps.

B Debugger Messages B-1.
Describes progress and error messages that the debugger may display.

B.1 Associating Sound With Error Messages B-2.
B.2 Alphabetical Summary of Debugger Messages B-2.
B.3 Additional Instructions for Expression Errors B-17.

C Glossary C-1.
Defines acronyms and key terms used in this book.

Figures

xviii

Figures

1–1 The Basic Debugger Display 1-2.
1–2 The Profiling-Environment Display 1-5.
1–3 TMS320C6x Software Development Flow 1-7.
1–4 Steps You Go Through to Prepare a Program 1-10.
3–1 Typical Assembly Display (for Auto Mode and Assembly Mode) 3-3.
3–2 Typical C Display (for Auto Mode Only) 3-3.
3–3 Typical Mixed Display (for Mixed Mode Only) 3-4.
3–4 Default and Additional MEMORY Windows 3-14.
3–5 Default Appearance of an Active and an Inactive Window 3-21.
4–1 The COMMAND Window 4-2.
4–2 The Menu Bar in the Basic Debugger Display 4-7.
4–3 All of the Pulldown Menus (Basic Debugger Display) 4-7.
5–1 Sample Memory Map for Use With a TMS320C6x Simulator 5-4.
10–1 An Example of the PROFILE Window 10-17.

 Tables

xix Contents

Tables

1–1 Summary of Debugger Options 1-12.
4–1 Predefined Constants for Use With Conditional Commands 4-15.
7–1 Display Formats for Debugger Data 7-17.
7–2 Data Types for Displaying Debugger Data 7-18.
9–1 Colors and Other Attributes for the COLOR and SCOLOR Commands 9-2.
9–2 Summary of Area Names for the COLOR and SCOLOR Commands 9-3.
10–1 Debugger Commands That Can/Can’t Be Used in the Profiling Environment 10-3.
10–2 Menu Selections for Marking Areas 10-7.
10–3 Menu Selections for Disabling Areas 10-9.
10–4 Menu Selections for Enabling Areas 10-10.
10–5 Menu Selections for Unmarking Areas 10-12.
10–6 Types of Data Shown in the PROFILE Window 10-18.
10–7 Menu Selections for Displaying Areas in the PROFILE Window 10-20.
11–1 Marking Areas 11-46.
11–2 Disabling Marked Areas 11-46.
11–3 Enabling Disabled Areas 11-47.
11–4 Unmarking Areas 11-48.
11–5 Changing the PROFILE Window Display 11-49.

xx

1-1Overview of a Code Development and Debugging System

Overview of a Code
Development and Debugging System

The TMS320C6x C source debugger is an advanced programmer’s interface
that helps you to develop, test, and refine ’C6x C programs (compiled with the
’C6x optimizing ANSI C compiler) and assembly language programs. The
debugger is the interface to the ’C6x simulator.

This chapter gives an overview of the programmer’s interface, describes the
’C6x code development environment, and provides instructions and options
for invoking the debugger.

Topic Page

1.1 Description of the C Source Debugger 1-2.

1.2 Description of the Profiling Environment 1-5.

1.3 Developing Code for the TMS320C6x 1-7.

1.4 Preparing Your Program for Debugging 1-10.

1.5 Invoking the Debugger 1-12.

1.6 Exiting the Debugger 1-15.

1.7 Debugging Your Programs 1-16.

Chapter 1

Description of the C Source Debugger

 1-2

1.1 Description of the C Source Debugger

The ’C6x C source debugging interface improves productivity by allowing you
to debug a program in the language it was written in. You can choose to debug
your programs in C, assembly language, or both. And, unlike many other de-
buggers, the ’C6x debugger’s higher level features are available even when
you’re debugging assembly language code.

The Texas Instruments advanced programmer’s interface is easy to learn and
use. Its friendly window-, mouse-, and menu-oriented interface reduces learn-
ing time and eliminates the need to memorize complex commands. The
debugger’s customizable displays and flexible command entry let you develop
a debugging environment that suits your needs. A shortened learning curve
and increased productivity reduce the software development cycle, so you’ll
get to market faster.

Figure 1–1 identifies several features of the debugger display.

Figure 1–1. The Basic Debugger Display

DISASSEMBLY
0000681c 00000000 NOP
00006820 003c54f4 call: STW,D2 A0,*B15––[2]
00006824 013c22f4 STW,D2 A2,*B15[1]
00006828 00000d10 B,S1 call+104 (000
0000682c 00008000 NOP 5
00006830 003c22e4 LDW,D2 *+B15[1],A0
00006834 00006000 NOP 4
00006838 0008667c STW,D2 A0,*+B14(0x86
0000683c 00001410 B,S1 call+160(0006
00006840 00008000 NOP 5
00006844 003c22e4 LDW,D2 *+B15[1],A0
00006848 00006000 NOP 4
0000684c 00002058 SHL,S1 A0,0x01,A0
00006850 0008677c STW,D2 A0,*+B14(0x86
00006854 00001190 B,S1 call+172 (000
00006858 00008000 NOP 5
0000685c 003c22e4 LDW,D2 ++B15[1],A0

CALLS
2: call()

1: main()

CPU

A0 00006998
B0 00000000
A1 00000001
B1 00000000
A2 00000000
B2 00000000
A3 00000000
B3 00000000
A4 00002a28
B4 00000000
A5 00000000
B5 00000000
A6 00000000
B6 00000000
A7 00000000

WATCH
1: str.a 0
2: F0 1.000000e
3: color GREEN

FILE: sample.c
0038 int aai[10][5];
0039 int *pi;
0040 char *xpc;
0041
0042 call(newvalue)
0043 int newvalue;
0044 {
0045 static in value = 0;
0046
0047 switch (newvalue & 3)
0048 {
0049 case 0 : str.a = newvalue; break;
0050 case 1 : str.b = newvalue + 1;
0051 case 2 : str.c = newvalue * 2;
0052 case 3 : xcall(newvalue); break;

COMMAND

>>>

whatis str

struct xxx str;

step

DISP: astr[7]
a 123
b 555
c 75435
f1 3
f2 6
f3 0x00f000a
f4 [...]

DISP: astr[7].f4
[0] 0
[1] 9
[2] 7
[3] 54
[4] 3
[5] 3
[6] 4
[7] 123
[8] 4
[9] 789

Load Break Watch Memory MoDe Run=F5 Step=F8 Next=F10ColorPulldown
menus

Disassembly
display

C source
display

Interactive
command
entry and
history window

Scrolling data
displays with

on-screen,
interactive

editing

Function call
traceback

Natural-format
data displays

MEMORY
00007cdc 00000000
00007ce0 07d5142a
00007ce4 0780606a
00007ce8 0007fe2a
00007cec 0000006a
00007cf0 07bc01e2
00007cf4 07bf07a2
00007cf8 0700002a
00007cfc 0700606a
00007d00 013fe428
00007d04 01000068
00007d08 0fffd410
00007d0c 00004000
00007d10 003e8c28
00007d14 00000068
00007d18 0ffd8610
00007d1c 00004000
00007d20 003e9428
00007d24 00000068

Description of the C Source Debugger

1-3Overview of a Code Development and Debugging System

Key features of the debugger

� Multilevel debugging . The debugger allows you to debug both C and
assembly language code. If you’re debugging a C program, you can
choose to view only the C source, the disassembly of the object code
created from the C source, or both. You can also use the debugger as an
assembly language debugger.

� Fully configurable, state-of-the-art, window-oriented interface. The
C source debugger separates code, data, and commands into manage-
able portions. Use any of the default displays. Or, select the windows you
want to display, size them, and move them where you want them.

� Comprehensive data displays. You can easily create windows for
displaying and editing the values of variables, arrays, structures, point-
ers—any kind of data—in their natural format (float, int, char, enum, or
pointer). You can even display entire linked lists.

WATCH
1: str.a 0
2: F0 1.000000e
3: color GREEN

DISP: str
a 123
b 0
c 75435
f1 3
f2 6
f3 0x00f000a
f4 [...]

DISP: *str.f3
a 8327
b 666
c 87213
f1 45
f2 27
f3 0x00f000a
f4 [...]

DISP: *str.f3–>f3
a 75
b 3212
c 782
f1 7
f2 9
f3 0x00f000a
f4 [...]

� On-screen editing. Change any data value displayed in any window—
just point the mouse, click, and type.

� Automatic update. The debugger automatically updates information on
the screen, highlighting changed values.

� Powerful command set. Unlike many other debugging systems, this
debugger doesn’t force you to learn a large, intricate command set. The
’C6x C source debugger supports a small but powerful command set that
makes full use of C expressions. One debugger command performs
actions that would take several commands in another system.

Description of the C Source Debugger

 1-4

� Flexible command entry. There are a variety of ways to enter com-
mands. You can type commands or use a mouse, function keys, or the
pulldown menus; choose the method that you like best. Want to reenter
a command? No need to retype it—simply use the command history.

� Create your own debugger. The debugger display is completely confi-
gurable, allowing you to create the interface that is best suited for your use.

� If you’re using a color display, you can change the colors of any area
on the screen.

� You can change the physical appearance of display features, such as
window borders.

� You can interactively set the size and position of windows in the
display.

Create and save as many custom configurations as you like, or use the
defaults. Use the debugger with a color display or a black-and-white
display. A color display is preferable; the various types of information are
easier to distinguish when they are highlighted with color.

� Variety of screen sizes. The debugger’s default configuration is set up
for a typical PC display, with 25 lines by 80 characters. If you use a sophis-
ticated graphics card, you can take advantage of the debugger’s addi-
tional screen sizes. A larger screen size allows you to display more infor-
mation and provides you with more screen space for organizing the
display— bringing the benefits of workstation displays to your PC.

� All the standard features you expect in a world-class debugger. The
debugger provides you with complete control over program execution with
features like conditional execution and single-stepping (including
single-stepping into or over function calls). You can set or clear a break-
point with a click of the mouse or by typing commands. You can define a
memory map that identifies the portions of target memory that the debug-
ger can access. You can choose to load only the symbol table portion of
an object file to work with systems that have code in ROM. The debugger
can execute commands from a batch file, providing you with an easy
method for entering often-used command sequences.

Description of the Profiling Environment

1-5Overview of a Code Development and Debugging System

1.2 Description of the Profiling Environment

In addition to the basic debugging environment, a second environment—the
profiling environment—is available. The profiling environment provides a
method for collecting execution statistics about specific areas in your code.
This gives you immediate feedback on your application’s performance.

Figure 1–2 identifies several features of the debugger display within the profil-
ing environment.

Figure 1–2. The Profiling-Environment Display

Pulldown menu
provides access

to often-used
basic debugger
commands plus
special profiling

commands

FILE: sample.c

0068 long int longi = 0
0069 register long reglong = 0x1234;
0070 register short regshort = 0x1234;
0071
0072 Re> for (i = 0; i < 0x70; i++);
0073 {
0074 call(i);
0075 if (i & 1) j += i;
0076 aai[k][k] = j;
0077 << if (!(i & 0xFFFF)) k++
0078 }
0079
0080 printf(”Final Result = %d\n”,j);

Load mAp Mark Enable Disable Unmark View Stop–points Profile

DISASSEMBLY
00007cdc 00000000 NOP
00007ce0 07d5142a Le> c_int00 MVK,S2 0xffffaa28,B15
00007ce4 0780606a MVKH,S2 0xc00000,B15
00007ce8 0007fe2a MVK,S2 0x0ffc,B0
00007cec 0000006a MVKH,S2 0x0000,B0
00007cf0 07bc01e2 ADD,S2 B0,B15,B15
00007cf4 07bf07a2 AND,S2 0xfffffff8,B15,B15
00007cf8 0700002a Ld> MVK,S2 0x0000,B15
00007cfc 0700606a MVKH,S2 0xc00000,B14
00007d00 013fe428 MVK,S1 0x7fc8,A2

COMMAND

>>>

 206 symbols loaded

Done

file sample.c

PROFILE
 Area Name Count Inclusive Incl–Max

CL <sample>#55 2 12 6

CF xcall() 1 23 23

AR main()–00006944 1 6 6

CR <sample>#72–77 1 102 102

AL c_int00 1 7 7

AL 00007cf8 Disabled

PROFILE window
displays execution
statistics

Profiling areas
are clearly

marked

Profiling areas
are clearly
marked

Key features of the profiling environment

The profiling environment builds on the same, easy-to-use interface available
in the basic debugging environment and has these additional features:

� More efficient code. Within the profiling environment, you can quickly
identify busy sections in your programs. This helps you to direct valuable
development time toward optimizing the sections of code that most dra-
matically affect program performance.

Description of the Profiling Environment

 1-6

� Statistics on multiple areas. You can collect statistics about individual
statements in disassembly or C, about ranges in disassembly or C, and
about C functions. When you are collecting statistics on many areas, you
can choose to view the statistics for all the areas or a subset of the areas.

� Comprehensive display of statistics. The profiler provides all the infor-
mation you need for identifying bottlenecks in your code:

� The number of times each area was entered during the profiling
session.

� The total execution time of an area, including or excluding the execu-
tion time of any subroutines called from within the area.

� The maximum time for one iteration of an area, including or excluding
the execution time of any subroutines called from within the area.

Statistics may be updated continuously during the profiling session or at
selected intervals.

� Configurable display of statistics. Display the entire set of data, or
display one type of data at a time. Display all the areas you’re profiling, or
display a selected subset of the areas.

� Visual representation of statistics. When you choose to display one
type of data at a time, the statistics will be accompanied by histograms for
each area, showing the relationship of each area’s statistics to those of the
other profiled areas.

� Disabled areas. In addition to identifying areas that you can collect
statistics on, you can also identify areas that you don’t want to affect the
statistics. This removes the timing impact from code such as a standard
library function or a fully optimized portion of code.

� Special profiling commands. The profiling environment supports a rich
set of commands to help you select areas and display information. Some
of the basic debugger commands—such as the memory map
commands—may be necessary during profiling and are available within
the profiling environment. Other commands—such as breakpoint
commands and run commands—are not necessary and are therefore not
available within the profiling environment.

Developing Code for the TMS320C6x

1-7Overview of a Code Development and Debugging System

1.3 Developing Code for the TMS320C6x

The ’C6x is well supported by a complete set of hardware and software
development tools, including a C compiler, assembler, and linker. Figure 1–3
illustrates the ’C6x code development flow. The most common paths of soft-
ware development are highlighted in grey; the other portions are optional.

Figure 1–3. TMS320C6x Software Development Flow

’C6x target
system

Linker

Assembler
source

Debugging
tools

runtime
support
library

Macro
library

Library
of object

files

COFF
object
files

Runtime-
support
library

Executable
COFF file

C
source

files

C compiler

Assembler

Developing Code for the TMS320C6x

 1-8

Common object file format (COFF) allows you to divide your code into logical
blocks, define your system’s memory map, and then link code into specific
memory areas. COFF also provides rich support for source-level debugging.

The following list describes the tools shown in Figure 1–3.

The ’C6x optimizing ANSI C compiler is a full-featured optimizing compiler
that translates standard ANSI C programs into ’C6x assembly language
source. Key characteristics include:

� Standard ANSI C. The ANSI standard is a precise definition of the C
language, agreed upon by the C community. The standard encompasses
most of the recent extensions to C. To an increasing degree, ANSI confor-
mance is a requirement for C compilers in the DSP community.

� Optimization. The compiler uses several advanced techniques for
generating efficient, compact code from C source.

� Assembly language output. The compiler generates assembly lan-
guage source that you can inspect.

� ANSI standard runtime support. The compiler package comes with a
complete runtime library that conforms to the ANSI C library standard. The
library includes functions for string manipulation, dynamic memory alloca-
tion, data conversion, timekeeping, trigonometry, exponential operations,
and hyperbolic operations. Functions for I/O and signal handling are not
included, because they are application specific.

� Flexible assembly language interface. The compiler has straightfor-
ward calling conventions, allowing you to easily write assembly and C
functions that call each other.

� Shell program. The compiler package includes a shell program that
enables you to compile, assemble, and link programs in a single step.

� Source interlist utility. The compiler package includes a utility that inter-
lists your original C source statements into the assembly language output
of the compiler. This utility provides you with an easy method for inspecting
the assembly code generated for each C statement.

C compiler

Developing Code for the TMS320C6x

1-9Overview of a Code Development and Debugging System

The assembler translates ’C6x assembly language source files into machine
language object files.

The linker combines object files into a single, executable object module. As
the linker creates the executable module, it performs relocation and resolves
external references. The linker is a tool that allows you to define your system’s
memory map and to associate blocks of code with defined memory areas.

The main purpose of the development process is to produce a module that can
be executed in a ’C6x target system. You can use the debugger as an inter-
face for the software simulator to refine and correct your code.

assembler

linker

debugging
tools

Preparing Your Program for Debugging

 1-10

1.4 Preparing Your Program for Debugging

Figure 1–4 illustrates the steps you must go through to prepare a program for
debugging.

Figure 1–4. Steps You Go Through to Prepare a Program

C Compiler

assembly
language

C
source

object
code

executable
object code

If you’re working with a C
program, start here.

If you’re working with an
assembly language
program, start here.

This is the file that you
load when you invoke the
debugger.

Assembler

Linker

code

If you’re preparing to
debug a C program. . .

1) Compile the program; use the –g option. If you plan
to use the profiler, compile the program with the –as
option.

2) Assemble the resulting assembly language pro-
gram. (The compiler does this automatically.)

3) Link the resulting object file.

This produces an object file that you can load into the
debugger.

If you’re preparing to
debug an assembly
language program. . .

1) Assemble the assembly language source file.

2) Link the resulting object file.

This produces an object file that you can load into the
debugger.

You can compile, assemble, and link a program by invoking the compiler,
assembler, and linker in separate steps; or you can perform all three actions
in a single step by using the cl60 shell program. The TMS320C6x Assembly
Language Tools User’s Guide and the TMS320C6x Optimizing C Compiler
User’s Guide contain complete instructions for invoking the tools individually
and for using the shell program.

Preparing Your Program for Debugging

1-11Overview of a Code Development and Debugging System

For your convenience, here’s the command for invoking the shell program
when preparing a program for debugging:

cl60 [–options] –g [filenames] [–z [link options]]

cl60 invokes the compiler and assembler.

–options affect the way the shell processes input files. If you plan to use
the debugger’s profiling environment, include the –as option.

–g tells the C compiler to produce symbolic debugging informa-
tion. When preparing a C program for debugging, you must use
the –g option, or you won’t be able to access symbolic debug-
ging information (such as C labels, variables, etc.).

filenames are one or more C source files, assembly language source
files, or object files. Filenames are not case sensitive.

–z invokes the linker. After compiling/assembling your programs,
you can invoke the linker in a separate step. If you want the
shell to automatically invoke the linker, however, use –z.

link options affect the way the linker processes input files; use these options
only when you use –z.

Options and filenames can be specified in any order on the command line.
However, –z must follow all C/assembly language source filenames and com-
piler options, and it must precede all linker options.

The shell identifies a file’s type by the filename’s extension.

Extension File type The shell will...

.c C source Compile, assemble, and
link the file

.asm Assembly language
source

Assemble and link the file

.s* (any extension that
begins with s)

Assembly language
source

Assemble and link the file

.o* (extension begins
with o)

Object file Link the file

none (.c assumed) C source Compile, assemble, and
link the file

Note: The shell links files only if you specify the –z option.

Invoking the Debugger

 1-12

1.5 Invoking the Debugger

Enter the following command on the command-line to invoke the standalone
debugger:

sim6x [filename] [–options]

sim6x invokes the debugger.

filename an optional parameter that names an object file that the debug-
ger loads into memory during invocation. The debugger looks
for the file in the current directory; if the file isn’t in the current
directory, you must supply the entire pathname. If you don’t
supply an extension for the filename, the debugger assumes
that the extension is .out.

–options supply the debugger with additional information.

Table 1–1 lists the debugger options that you can use when invoking a debug-
ger, and the subsections that follow the table describe these options. You can
also specify filename and option information with the D_OPTIONS environ-
ment variable (see Setting up the environment variables in your installation
guide).

Table 1–1. Summary of Debugger Options

Option Brief Description

–b Select a preset screen size (80 characters by 40 lines)

–bb Select a slightly larger preset screen size (80 characters by
50 lines)

–c Clear the .bss section

–d machinename Display the debugger on different machine (X Window
System only)

–i pathname Identify additional directories

–min Select the minimal debugging mode

–o Enable C I/O

–profile Enter the profiling environment

–s Load the symbol table only

–t filename Identify a new initialization file

–v Load without the symbol table

–x Ignore D_OPTIONS

Invoking the Debugger

1-13Overview of a Code Development and Debugging System

Selecting the screen size (–b, –bb options)

By default, the debugger uses an 80-character-by-25-line screen.

When you run multiple debuggers, the default screen size is a good choice be-
cause you can more easily view multiple default-size debuggers on your
screen. However, you can change the screen size by using one of the –b op-
tions, which provides a preset screen size, or by resizing the screen at run
time. (Note that when you are running a standalone debugger, you can also
change the screen size by using one of these methods.)

� Using a preset screen size. Use the –b or –bb option to select one of
these preset screen sizes:

–b Screen size is 80 characters by 43 lines.
–bb Screen size is 80 characters by 50 lines.

� Resizing the screen at run time. You can resize the screen at run time
by using your mouse to change the size of the operating-system window
that contains the debugger. The maximum size of the debugger screen is
132 characters by 60 lines.

Clearing the .bss section (–c option)

The –c option clears the .bss section when the debugger loads code. You can
use this option when you have C programs that use the RAM initialization mod-
el (specified with the –cr linker option).

Displaying the debugger on a different machine (–d option)

If you are using the X Window System, you can use the -d option to display the
debugger on a different machine than the one the program is running on. For
example, if you are running a debugger on a machine called opie and you want
the debugger display to appear on a machine called barney, use the following
command to invoke the debugger:

sim6x –d barney:0

You can also specify a different machine by using the DISPLAY environment
variable (see the appropriate installation guide for more information). If you
use both the DISPLAY environment variable and –d, the –d option overrides
DISPLAY.

Invoking the Debugger

 1-14

Identifying additional directories (–i option)

The –i option identifies additional directories that contain your source files.
Replace pathname with an appropriate directory name. You can specify sev-
eral pathnames; use the –i option as many times as necessary. For example:

sim6x –i pathname 1 –i pathname 2 –i pathname 3 . . .

Using –i is similar to using the D_SRC environment variable (see Setting up
the environment variables in the appropriate installation guide). If you name
directories with both –i and D_SRC, the debugger first searches through direc-
tories named with –i. The debugger can track a cumulative total of 20 paths
(including paths specified with –i, D_SRC, and the debugger USE command).

Selecting the minimal debugging mode (–min option)

By default, the debugger automatically displays whatever code is currently
running: assembly language or C. By default, the MEMORY, COMMAND,
DISASSEMBLY, and CPU windows are displayed. You may also display other
windows, such as the DISP and WATCH windows.

The debugger has a minimal debugging mode that displays the COMMAND,
WATCH, and DISP windows only. The WATCH and DISP windows are dis-
played only if you cause them to display (by entering the WA or DISP com-
mands). Minimal mode may be useful when you need to debug a memory
problem.

To invoke the debugger and enter minimal mode, use the –min option:

sim6x –min . . .

For more information about the windows in the debugger interface, see Sec-
tion 3.2, Descriptions of the Different Kinds of Windows and Their Contents.

Entering the profiling environment (–profile option)

The –profile option allows you to bring up the debugger in a profiling environ-
ment so that you can collect statistics about code execution. Note that only a
subset of the basic debugger features is available in the profiling environment.

Loading the symbol table only (–s option)

If you supply a filename when you invoke the debugger, you can use the –s
option to tell the debugger to load only the file’s symbol table (without the file’s
object code). This option is useful in a debugging environment in which the
debugger cannot, or need not, load the object code (for example, if the code
is in ROM). Using this option is similar to loading a file by using the debugger’s
SLOAD command.

Exiting the Debugger

1-15Overview of a Code Development and Debugging System

Identifying a new initialization file (–t option)

The –t option allows you to specify an initialization command file that will be
used instead of siminit.cmd or init.cmd. The format for the –t option is:

–t filename

Loading without the symbol table (–v option)

The –v option prevents the debugger from loading the entire symbol table
when you load an object file. The debugger loads only the global symbols and
later loads local symbols as it needs them. This speeds up the loading time and
consumes less memory.

The –v option affects all loads, including those performed when you invoke the
debugger and those performed with the LOAD command within the debugger
environment.

Ignoring D_OPTIONS (–x option)

The –x option tells the debugger to ignore any information supplied with the
D_OPTIONS environment variable (described in the installation guide).

1.6 Exiting the Debugger

To exit the debugger, enter the following command from the COMMAND win-
dow:

quit

You don’t need to worry about where the cursor is in the debugger
window—just type. If a program is running, press ESC to halt program execu-
tion before you quit the debugger.

You can also exit the debugger by selecting the close option from the Windows
menu bar.

Invoking the Debugger / Exiting the Debugger

Debugging Your Programs

 1-16

1.7 Debugging Your Programs

Debugging a program is a multiple-step process. These steps are described
below, with references to parts of this book that will help you accomplish each
step.

Once you have decided what changes must be made to your program,
exit the debugger, edit your source file, and return to Step 1.

Step 6

Prepare a C program or assem-
bly language program for de-
bugging.

See Section 1.4, Preparing
Your Program for Debugging,
page 1-10.

Step 1

Ensure that the debugger has a
valid memory map.

See Chapter 5, Defining a
Memory Map.

Load the program’s object file. See Section 6.3, Loading Ob-
ject Code, page 6-8.

Run the loaded file. You can run
the entire program, run parts of
the program, or single-step
through the program.

See Section 7.5, Running Your
Programs, page 6-10.

Stop the program at critical
points and examine important
information.

See Chapter 8, Using Software
Breakpoints, and Chapter 7,
Managing Data.

Step 2

Step 3

Step 4

Step 5

2-1 Chapter Title—Attribute Reference

An Introductory Tutorial
to the C Source Debugger

This chapter provides a step-by-step, hands-on demonstration of the ’C6x C
source debugger’s basic features. This is not the kind of tutorial that you can
take home to read—it is effective only if you’re sitting at your terminal, perform-
ing the lessons in the order that they’re presented. The tutorial contains two
sets of lessons (11 in the first, 13 in the second) and takes about 1 hour to com-
plete.

Topic Page

How to use this tutorial 2-2.
A note about entering commands 2-2.
An escape route (just in case) 2-3.
Invoke the debugger and load the sample program’s object code 2-3.
Take a look at the display. . . 2-4.
What’s in the DISASSEMBLY window? 2-5.
Select the active window 2-5.
Resize the active window 2-7.
Zoom the active window 2-8.
Move the active window 2-9.
Scroll through a window’s contents 2-10.
Display the C source version of the sample file 2-11.
Execute some code 2-12.
Become familiar with the four debugging modes 2-12.
Open another text file, then redisplay a C source file 2-15.
Use the basic RUN command 2-16.
Set some breakpoints 2-16.
Watch some values and single-step through code 2-18.
Run code conditionally 2-20.
WHATIS that? 2-21.
Clear the COMMAND window display area 2-22.
Display the contents of an aggregate data type 2-22.
Display data in another format 2-25.
Change some values 2-28.
Define a memory map 2-29.
Define your own command string 2-30.
Close the debugger 2-30.

Chapter 2

How to Use This Tutorial / A Note About Entering Commands

 2-2

How to use this tutorial

This tutorial contains three basic types of information:

Primary actions Primary actions identify the main lessons in the
tutorial; they’re boxed so that you can find them
easily. A primary action looks like this:

Make the CPU window the active window:

win CPU

Important information In addition to primary actions, important infor-
mation ensures that the tutorial works correctly.
Important information is marked like this:

Important! The CPU window should still be
active from the previous step.

Alternative actions Alternative actions show additional methods for
performing the primary actions. Alternative
actions are marked like this:

Try This: Another way to display the current
code in MEMORY is to show memory begin-
ning from the current PC. . .

Important! This tutorial assumes that you have correctly and completely
installed your debugger (including invoking any files or operating-system
commands as instructed in the installation guide).

A note about entering commands

Whenever this tutorial tells you to type a debugger command, just type—the
debugger automatically places the text on the command line. You don’t have
to worry about moving the cursor to the command line; the debugger takes
care of this for you. (There are a few instances when this isn’t true—for exam-
ple, when you’re editing data in the CPU or MEMORY window—but this is
explained later in the tutorial.)

Also, you don’t have to worry about typing commands in uppercase or lower-
case—either is fine. There are a few instances when a command’s parame-
ters must be entered in uppercase, and the tutorial points this out.

 An Escape Route / Invoke the Debugger and Load the Sample Program’s Object Code

2-3 An Introductory Tutorial to the C Source Debugger

An escape route (just in case)

The steps in this tutorial create a path for you to follow. The tutorial won’t
purposely lead you off the path. But sometimes when people use new
products, they accidently press the wrong key, push the wrong mouse button,
or mistype a command. Suddenly, they’re off the path without any idea of
where they are or how they got there.

This probably won’t happen to you. But, if it does, you can almost always get
back to familiar ground by pressing ESC . If you were running a program when
you pressed ESC , you should also type RESTART . Then go back to the
beginning of whatever lesson you were in and try again.

Invoke the debugger and load the sample program’s object code

Included with the debugger is a demonstration program named sample. This
lesson shows you how to invoke the debugger and load the sample program.

Invoke the debugger and load the sample program; enter:

sim6x sample.out

Take a Look at the Display

 2-4

Take a look at the display. . .

Now you should see a display similar to this. (It may not be exactly the same,
but it should be close.)

DISASSEMBLY

A0 00000000 B0 00000000

A1 00000000 B1 00000000

A2 00000000 B2 00000000

A3 00000000 B3 00000000

A4 00000000 B4 00000000

A5 00000000 B5 00000000

A6 00000000 B6 00000000

A7 00000000 B7 00000000

A8 00000000 B8 00000000

A9 00000000 B9 00000000

A10 00000000 B10 00000000

A11 00000000 B11 00000000

A12 00000000 B12 00000000

A13 00000000 B13 00000000

A14 00000000 B14 00000000

CPU

MEMORYCOMMAND

>>>

Loading sample.out

 206 Symbols loaded

Done

00000000 00000000 00000000 00000000

0000000c 00000000 00000000 00000000

00000018 00000000 00000000 00000000

00000024 00000000 00000000 00000000

00000030 00000000 00000000 00000000

0000003c 00000000 00000000 00000000

Menu bar with
pulldown menus

Reverse assembly
of memory contents

Register contents

COMMAND window
display area

Memory contents

Command line

Load Break Watch Memory Color MoD e Run=F5 Step=F8 Next=F10

00007cdc 00000000 NOP

00007ce0 07d5142a c_int00 MVK,S2

00007ce4 0780606a MVKH,S2

00007ce8 0007fe2a MVK,S2

00007cec 0000006a MVKH,S2

00007cf0 07bc01e2 ADD,S2

00007cf4 07bf07a2 AND,S2

00007cf8 0700002a MVK,S2

00007cfc 0700606a MVKH,S2

00007d00 013fe428 MVK,S1

00007d04 01000068 MVKH,S1

00007d08 0fffd410 B,S1

00007d0c 00004000 NOP

00007d10 003e8c28 MVK,S1

00007d14 00000068 MVKH,S1

current PC
(highlighted)

� If you don’t see a display, then your debugger may not be installed proper-
ly. Go back through the installation instructions and be sure that you fol-
lowed each step correctly; then reinvoke the debugger.

� If you do see a display, check the first few lines of the DISASSEMBLY
window. If these lines aren’t the same—if, for example, they show ADD
instructions or say Invalid address—then enter the following commands
on the debugger command line. (Just type; you don’t have to worry about
where the cursor is.)

1) Reset the ’C6x processor:

reset

2) Load the sample program again:

load sample.out

 What’s in the DISASSEMBLY Window? / Select the Active Window

2-5 An Introductory Tutorial to the C Source Debugger

What’s in the DISASSEMBLY window?

The DISASSEMBLY window always shows the reverse assembly of memory
contents; in this case, it shows an assembly language version of sample.out.
The MEMORY window displays the current contents of memory. Because you
loaded the object file sample.out when you invoked the debugger, memory
contains the object code version of the sample file.

This tutorial step demonstrates that the code shown in the DISASSEMBLY
window corresponds to memory contents. Initially, memory is displayed start-
ing at address 0; if you look at the first line of the DISASSEMBLY window, you’ll
see that its display starts at address 0x7cdc.

Modify the MEMORY display to show the same object code that is dis-
played in the DISASSEMBLY window:

mem 0x7cdc

Notice that the addresses in the first column of the DISASSEMBLY window
correspond to the addresses in the first column of the MEMORY window; the
values in the second column of the DISASSEMBLY window correspond to the
memory contents displayed in the second, third, and fourth columns of the
MEMORY window.

Select the active window

This lesson shows you how to make a window into the active window. You can
move and resize any window; you can close some windows. Whenever you
type a command or press a function key to move, resize, or close a window,
the debugger must have some method of understanding which window you
want to affect. The debugger does this by designating one window at a time
to be the active window. Any window can be the active window, but only one
window at a time can be active.

Make the CPU window the active window:

win CPU

lesson continues on the next page →

Select the Active Window

 2-6

Important! Notice the appearance of the CPU window (especially its bor-
ders) in contrast to the other, inactive windows. This is how you can tell which
window is active.

Important! If you don’t see a change in the appearance of the CPU window,
look at the way you entered the command. Did you enter CPU in uppercase
letters? For this command, it’s important that you enter the parameter in upper-
case, as shown.

Try This: Press the F6 key to “cycle” through the windows in the display,
making each one active in turn.

Try This: You can also use the mouse to make a window active:

1) Point to any location on the window’s border.

2) Click the left mouse button.

Be careful! If you point inside the window, the window becomes active when
you press the mouse button, but something else may happen as well:

� If you’re pointing inside the CPU window, then the register you’re pointing
to becomes active. The debugger then treats the text you type as a new
value for that register. Similarly, if you’re pointing inside the MEMORY
window, the address you’re pointing to becomes active.

Press ESC to get out of this.

� If you’re pointing inside the DISASSEMBLY or FILE window, you’ll set a
breakpoint on the statement that you were pointing to.

Point to the same statement; press the button again to delete the break-
point.

 Resize the Active Window

2-7 An Introductory Tutorial to the C Source Debugger

Resize the active window

This lesson shows you how to resize the active window.

Important! Be sure the CPU window is still active.

Make the CPU window as small as possible:

size 4,3

This tells the debugger to make the window 4 characters by 3 lines, which is
the smallest a window can be. (If it were any smaller, the debugger wouldn’t
be able to display all four corners of the window.) If you try to enter smaller
values, the debugger will warn you that you’ve entered an Invalid window size.
The maximum width and length depend on which screen-size option you used
when you invoked the debugger.

Make the CPU window larger:

size Enter the SIZE command without parameters

Make the window 3 lines longer

Make the window 4 characters wider

Press this key when you finish sizing the window

You can use ↑ to make the window shorter and ← to make the window
narrower.

Try This: You can use the mouse to resize the window (note that this process
forces the selected window to become the active window).

1) Point to the lower right corner of the CPU window.

2) Press the left mouse button but don’t release it; move the mouse while
you’re holding in the button. This resizes the window.

3) Release the mouse button when the window reaches the desired size.

Zoom the Active Window

 2-8

Zoom the active window

Another way to resize the active window is to zoom it. Zooming the window
makes it as large as possible.

Important! Be sure the CPU window is still active.

Make the active window as large as possible:

zoom

The window should now be as large as possible, taking up the entire display
(except for the menu bar) and hiding all the other windows. Notice that you can
now see additional registers that were not displayed before. For example, you
can now see the current value of the PC register.

“Unzoom” or return the window to its previous size by entering the ZOOM
command again:

zoom The ZOOM command will be recognized,
even though the COMMAND window is hidden

by the CPU window.

The window should now be back to the size it was before zooming.

Try This: You can use the mouse to zoom a window.

Zoom the DISASSEMBLY window:

1) Point to the upper left corner of the DISASSEMBLY window.

2) Click the left mouse button. This makes the DISASSEMBLY window active
and zooms it at the same time.

Now, you can see the complete disassembly code of each line in the sample
program. Return the window to its previous size by repeating steps 1 and 2.

 Move the Active Window

2-9 An Introductory Tutorial to the C Source Debugger

Move the active window

This lesson shows you how to move the active window.

Important! Be sure the CPU window is still active.

Move the CPU window to the upper left portion of the screen:

move 0,1 The debugger doesn’t let you move the window
to the very top—that would hide the menu bar

The MOVE command’s first parameter identifies the window’s new X position
on the screen. The second parameter identifies the window’s new Y position
on the screen. The maximum X and Y positions depend on which screen-size
option you used when you invoked the debugger and on the position of the win-
dow before you tried to move it.

Try This: You can use the MOVE command with no parameters and then use
arrow keys to move the window:

move
→ → → → Press → until the CPU window is back where it was

(it may seem as if only the border is moving—this is normal)
ESC Press ESC when you finish moving the window

You can use ↑ to move the window up, ↓ to move the window down, and
← to move the window left.

Try This: You can use the mouse to move the window (note that this process
forces the selected window to become the active window).

1) Point to the top edge or left edge of the window border.

2) Press the left mouse button, but don’t release the button; move the mouse
while you’re holding in the button.

3) Release the mouse button when the window reaches the desired position.

Scroll Through a Window’s Contents

 2-10

Scroll through a window’s contents

Many of the windows contain more information than can possibly be displayed
at one time. You can view hidden information by moving through a window’s
contents. The easiest way to do this is to use the mouse to scroll the display
up or down.

If you examine most windows, you’ll see an up arrow near the top of the right
border and a down arrow near the bottom of the right border. These are scroll
arrows.

Scroll through the contents of the DISASSEMBLY window:

1) Point to the up or down scroll arrow.

2) Press the left mouse button; continue pressing it until the dis-
play has scrolled several lines.

3) Release the button.

Try This: You can use several of the keys to modify the display in the active
window.

Make the MEMORY window the active window:

win MEMORY

Now try pressing these keys; observe their effects on the window’s contents.

↓ ↑ PAGE DOWN PAGE UP

These keys don’t work the same for all windows; Section 11.5, Summary of
Special Keys, on page 11-50 summarizes the functions of all the special keys
and key sequences and how they affect different windows.

 Display the C Source Version of the Sample File

2-11 An Introductory Tutorial to the C Source Debugger

Display the C source version of the sample file

Now that you can find your way around the debugger interface, you can
become familiar with some of the debugger’s more significant features. It’s
time to load C code.

Display the contents of a C source file:

file sample.c

This opens a FILE window that displays the contents of the file sample.c
(sample.c was one of the files that contributed to making the sample object
file). You can always tell which file you’re displaying by looking at the label in
the FILE window. Right now, the label says FILE: sample.c. If you can’t see the
label, press F6 until the FILE window becomes the active window.

The CALLS window is displayed also. The CALLS window tracks the C func-
tions as they are called. Right now, the CALLS window lists **UNKNOWN as
the first function, because it is waiting for a function to be called.

Execute Some Code / Become Familiar With the Four Debugging Modes

 2-12

Execute some code

Let’s run some code—not the whole program, just a portion of it.

Important! You will be looking at the contents of the PC register in this lesson.
If you cannot see the contents of the PC register in your CPU window, either
resize your CPU window or scroll down until you can see the PC value.

Execute a portion of the sample program:

go main The label in the COMMAND window changes
to COMMAND [RUNNING...] to indicate

that your program is executing.

You’ve just executed your program up to the point where main() is declared.
Notice how the display has changed:

� The current PC is highlighted in both the DISASSEMBLY and FILE
windows.

� The object codes of the first several statements in the DISASSEMBLY win-
dow have changed color because these statements are associated with
the current C statement (which is highlighted in the FILE window).

� The CALLS window, which tracks functions as they’re called, now lists
main().

� The color for the value of the PC in the CPU window has changed because
the PC’s value changed during program execution.

Become familiar with the four debugging modes

The debugger has four basic debugging modes:

� Mixed mode shows both disassembly and C at the same time.

� Auto mode shows disassembly or C, depending on what part of your
program happens to be running.

� Assembly mode shows only the disassembly, no C, even if you’re
executing C code.

� Minimal mode shows only the COMMAND window (no C or
disassembly).

When you opened the FILE window in a previous step, the debugger switched
to mixed mode; you should be in mixed mode now. (You can tell that you’re in
mixed mode if both the FILE and DISASSEMBLY windows are displayed.)

 Become Familiar With the Four Debugging Modes

2-13 An Introductory Tutorial to the C Source Debugger

The following steps show you how to switch debugging modes.

Use the MoDe menu to select assembly mode:

1) Look at the top of the display: the first line shows a row of pull-
down menu selections.

2) Point to the word MoDe on the menu bar.

3) Press the left mouse button, but don’t release it; drag the
mouse downward until Asm (the second entry) is highlighted.

4) Release the button.

This switches to assembly mode. You should see the DISASSEMBLY window,
but not the FILE window.

Switch to auto mode:

1) Press . This displays and freezes the MoDe menu.

2) Now select C(auto). To do so, choose one of these methods:

Press the arrow keys to move up/down through the menu; when
C(auto) is highlighted, press .

Type C.

Point the mouse cursor at C(auto), then click the left mouse but-
ton.

You should be in auto mode now, and you should see the FILE window. The
statement that defines the main() label should still be highlighted. You should
not see the DISASSEMBLY window, because the processor is in the C portion
of your program. Auto mode automatically switches between an assembly and
a C display, depending on where you are in your program. Here’s a demonstra-
tion of that:

Restart your program, so it is at a point that executes assembly language
code:

restart

lesson continues on the next page →

Become Familiar With the Four Debugging Modes

 2-14

You’re still in auto mode, but you should now see the DISASSEMBLY window.
The current PC should be at the statement that defines the c_int00 label (the
first statement in the sample program).

Try This: You can also switch modes by typing one of these commands:

asm switches to assembly-only mode

c switches to auto mode

mix switches to mixed mode

minimal switches to minimal mode

Switch back to mixed mode before continuing:

mix

You’ve finished the first half of the tutorial and the
first set of lessons.

If you want to close the debugger, just type QUIT . When you come back,
reinvoke the debugger and load the sample program (page 2-3) and continue
with the second set of lessons.

 Open Another Text File, Then Redisplay a C Source File

2-15 An Introductory Tutorial to the C Source Debugger

Open another text file, then redisplay a C source file

In addition to what you already know about the FILE window and the FILE
command, you should also know that:

� You can display any text file in the FILE window.

� If you enter any command that requires the debugger to display a C source
file, it automatically displays that code in the FILE window (regardless of
whether the window is open or not and regardless of what is already
displayed in the FILE window).

Display a file that isn’t a C source file:

file init.cmd

This replaces sample.c in the FILE window with your init.cmd file.

Remember, you can tell which file you’re displaying by the label in the FILE
window. Right now, the label should say FILE: init.cmd.

Redisplay another C source file (sample.c):

func call

Now the FILE window label should say FILE: sample.c because the call() func-
tion is in sample.c.

Use the Basic RUN Command / Set Some Breakpoints

 2-16

Use the basic RUN command

The debugger provides you with several ways of running code, but it has one
basic run command.

Run your entire program:

run The label in the COMMAND window changes
to COMMAND [RUNNING...] to indicate

that your program is executing.

Entered this way, the command basically means “run forever”. You may not
have that much time!

This isn’t very exciting; halt program execution:

Set some breakpoints

When you halted execution in the previous step, you should have seen
changes in the display similar to the changes you saw when you entered go
main earlier in the tutorial. When you pressed ESC , you had little control over
where the program stopped. Knowing that information changed was nice, but
what part of the program affected the information?

This information would be much more useful if you picked an explicit stopping
point before running the program. Then, when the information changed, you’d
have a better understanding of what caused the changes. You can stop
program execution in this way by setting software breakpoints.

Important! This lesson assumes that you’re displaying the contents of
sample.c in the FILE window. If you aren’t, enter:

file sample.c

 Set Some Breakpoints

2-17 An Introductory Tutorial to the C Source Debugger

Set a software breakpoint and run your program:

1) Scroll to line 42 in the FILE window (the call(newvalue) statement) and
set a breakpoint at that line:

a) Point the mouse cursor at the statement on line 42.

b) Click the left mouse button. Notice that BP> (for breakpoint)
appears at the beginning of the line and that the line is high-
lighted.

2) Reset the program entry point:

restart

3) Enter the run command:

run

Once again, you should see that some statements are highlighted in the CPU
window, showing that they were changed by program execution. But this time,
you know that the changes were caused by code from the beginning of the
program to line 42 in the FILE window.

Clear the breakpoint:

1) Point the mouse cursor at the statement on line 42. (It should
still be highlighted from setting the breakpoint.)

2) Click the left mouse button. The line is no longer highlighted.

Watch Some Values and Single-Step Through Code

 2-18

Watch some values and single-step through code

Now you know how to update the display without running your entire program;
you can set software breakpoints to obtain information at specific points in your
program. But what if you want to update the display after each statement? No,
you don’t have to set a breakpoint at every statement—you can use
single-step execution.

Set up for the single-step example:

restart
go main

The debugger has another type of window called a WATCH window that’s very
useful in combination with single-step execution. What’s a WATCH window
for? Suppose you are interested in only a few specific register values, not all
of the registers shown in the CPU window. Or suppose you are interested in
a particular memory location or in the value of some variable. You can observe
these data items in a WATCH window.

Set up the WATCH window before you start the single-step execution.

Open a WATCH window and change to mixed mode:

wa b15, Stack Pointer, x
wa pc,, x
wa *0x6820, Call
wa i
mix

If the WATCH window isn’t wide enough to display the value of the stack point-
er, resize the window.

You may have noticed that the WA (watch add) command has three parame-
ters. The first parameter is the item that you’re watching. The second parame-
ter is an optional label. The third parameter is the format for the data display.
For example, you displayed the contents of the B15 register with the label
Stack Pointer in hexadecimal format. (You specified hexadecimal with an x in
the third parameter.) You also displayed the contents of the PC register without
a label in hexadecimal format. (You specified that you wanted to use the ex-
pression instead of a label by inserting an extra comma.)

 Watch Some Values and Single-Step Through Code

2-19 An Introductory Tutorial to the C Source Debugger

Now try out the single-step commands. Hint: Watch the PC in the FILE and
DISASSEMBLY windows; watch the values that you set up in the WATCH win-
dow.

Single-step through the sample program:

step 20

Try This: Notice that the step command single-stepped each assembly
language statement (in fact, you single-stepped through 20 assembly
language statements). The debugger supports additional single-step com-
mands that have a slightly different flavor.

� For example, if you enter:

cstep 20

you’ll single-step 20 C statements, not assembly language statements
(notice how the PC “jumps” in the DISASSEMBLY window).

� Reset the program entry point and run to main().

restart
go main

Now enter the NEXT command, as shown below. You’ll be single-stepping
20 assembly language statements.

next 20

(There’s also a CNEXT command that “nexts” in terms of C statements.)

Run Code Conditionally

 2-20

Run code conditionally

Try executing this loop one more time. Take a look at this code; it’s doing a lot
of work with a variable named i. You may want to check the value of i at specific
points instead of after each statement. To do this, you set software breakpoints
at the statements you’re interested in and then initiate a conditional run.

First, clear out the WATCH window so that you won’t be distracted by any
superfluous data items.

Delete the first three data items from the WATCH window (don’t watch
them anymore):

wd 3
wd 1
wd 1

The variable i was the fourth item added to the WATCH window in the previous
tutorial step, and it should now be the only remaining item in the window.

Set up for the conditional run examples:

1) Set software breakpoints at lines 72 and 74.

2) Reset the program entry point:

restart

3) Run the first part of the program:

go main

Now initiate the conditional run:

run i<10

This causes the debugger to run through the loop as long as the value of i is
less than 10. Each time the debugger encounters the breakpoints in the loop,
it updates the value of i in the WATCH window.

 Run Code Conditionally / WHATIS That?

2-21 An Introductory Tutorial to the C Source Debugger

When the conditional run completes, close the WATCH window.

Close the WATCH window:

wr

WHATIS that?

At some point, you might like to obtain some information about the types of
data in your C program. Maybe things won’t be working quite the way you’d
planned, and you’ll find yourself saying something like “... but isn’t that sup-
posed to point to an integer?” Here’s how you can check on this kind of infor-
mation; be sure to watch the COMMAND window display area as you enter
these commands.

Use the WHATIS command to find the types of some of the variables
declared in the sample program:

whatis genum
enum yyy genum; genum is an enumerated type

whatis tiny6
struct { tiny6 is a structure

int u;
int v;
int x;
int y;
int z;

} tiny6;
whatis call

int call(); call is a function that returns an integer
whatis s

short s; s is a short unsigned integer

Clear the COMMAND Window Display Area / Display the Contents of an Aggregate Data Type

 2-22

Clear the COMMAND window display area

After displaying all of these types, you may want to clear them away. This is
easy to do.

Clear the COMMAND window display area:

cls

Display the contents of an aggregate data type

The WATCH window is convenient for watching single, or scalar, values. When
you’re debugging a C program, though, you may need to observe values that
aren’t scalar; for example, you might need to observe the effects of program
execution on an array. The debugger provides another type of window called
a DISP window, where you can display the individual members of an array or
structure.

Show a structure in a DISP window:

disp small

Close the DISP window:

F4

Show another structure in a DISP window:

disp big1

 Display the Contents of an Aggregate Data Type

2-23 An Introductory Tutorial to the C Source Debugger

Now you should see a display like the one below. The newly opened DISP
window becomes the active window. Like the FILE window, you can always tell
what’s being displayed because of the way the DISP window is labeled. Right
now, it should say DISP: big1.

DISP: big1
b1 0
b2 0
b3 0
b4 0
b5 0
q1 [...]
q2 {...}
q3 0x00000000

(Note that the values displayed in this diagram may be different from what you
see on the screen.)

� Members b1, b2, b3, b4, and b5 are ints; you can tell because they’re
displayed as integers (shown as plain numbers without prefixes).

� Member q1 is an array; you can tell because q1 shows [. . .] instead of a
value.

� Member q2 is another structure; you can tell because q2 shows {. . .}
instead of a value.

� Member q3 is a pointer; you can tell because it is displayed as a hexadeci-
mal address (indicated by a 0x prefix) instead of an integer value.

If a member of a structure or an array is itself a structure or an array, or even
a pointer, you can display its members (or the data it points to) in additional
DISP windows (referred to as the original DISP window’s children).

Display what q3 is pointing to:

1) Point at the address displayed next to the q3 label in big1’s
display.

2) Click the left mouse button.

This opens a second DISP window, named *big1.q3, that shows what q3 is
pointing to (it’s pointing to another structure). Close this DISP window, or move
it out of the way.

lesson continues on the next page →

Display the Contents of an Aggregate Data Type

 2-24

Display array q1 in another DISP window:

1) Point at the [. . .] displayed next to the q1 label in big1’s
display.

2) Click the left mouse button.

This opens another DISP window labeled DISP: big1.q1.

Try This: Display structure q2 in another DISP window.

1) Close any additional DISP windows, or move them out of the way so that
you can clearly see the original DISP window that you opened to display
big1.

2) Make big1’s DISP window the active window.

↓ ↑ 3) Use these arrow keys to move the field cursor (_) through the list of big1’s
members until the cursor points to q2.

F9 4) Now press F9 .

Close all of the DISP windows:

1) Make big1’s DISP window the active window.

2) Press .

When you close the main DISP window, the debugger closes all of its children
as well.

 Display Data in Another Format

2-25 An Introductory Tutorial to the C Source Debugger

Display data in another format

Usually, when you add an item to the WATCH window or open a DISP window,
the data is shown in its natural format. This means that ints are shown as
integers, floats are shown as floating-point values, pointers are shown as hex-
adecimal values, etc. Occasionally, you may wish to view data in a different
format. This can be especially important if you want to show memory or regis-
ter contents in another format.

One way to display data in another format is through casting (which is part of
the C language). In the expression below, the *(float *) portion of the expres-
sion tells the debugger to treat address 0x100 as type float (exponential floa-
ting-point format).

Display memory contents in floating-point format:

disp *(float *)0x100

This opens a DISP window to show memory contents in an array format. The
array member identifiers don’t necessarily correspond to actual addresses—
they’re relative to the first address you request with the DISP command. In this
case, the item displayed as item [0] is the contents of address 0x0100—it isn’t
memory location 0. Note that you can scroll through the memory displayed in
the DISP window; item [1] is at 0x0101, and item [–1] is at 0x0ffe.

lesson continues on the next page →

Display Data in Another Format

 2-26

You can also change display formats according to data type. This affects all
data of a specific C data type.

Change display formats according to data types by using the SETF (set
format) command:

1) For comparison, watch the following variables. Their C data types are
listed on the right.

wa i Type int
wa ff Type float
wa dd Type double

2) You can list all the data types and their current display formats:

setf

3) Now display the following data types with new formats:

setf int, c Ints as characters
setf float, o Floats as octal integers
setf double, x Doubles as hex integers

4) List the data types to display formats again. You might want to zoom
the COMMAND window to compare the new listing of the type formats
to the listing that you saw in step 2:

setf

5) Add the variables to the WATCH window again; use labels to identify
the additions:

wa i, NEWi
wa ff, NEWff
wa dd, NEWdd

Notice the differences in the display formats between the first versions
you added and these new versions.

6) Now reset all data types back to their defaults:

setf *

 Display Data in Another Format

2-27 An Introductory Tutorial to the C Source Debugger

A third way to display data in another format is to use the DISP, ?, MEM, or WA
command with an optional parameter that identifies the new display format.
The following examples are for ? and WA—DISP and MEM work similarly.

Use display formats with the ? and WA commands:

1) Evaluate a variable and display it as a character:

? small.ra[1],c

2) Add a variable to the watch window and display it as an octal integer:

wa str.a,,o Notice that because no label was used
 with WA, an extra comma was inserted;

otherwise, the o parameter would have
been interpreted as a label.

To get ready for the next step, close the DISP and WATCH windows.

Change Some Values

 2-28

Change some values

You can edit the values displayed in the MEMORY, CPU, WATCH, and DISP
windows.

Important! Make sure no other windows are obscuring your view of the
MEMORY window.

Change a value in memory:

1) Display memory beginning with address 0x0100:

mem 0x100

2) Point to the contents of memory location 0x0100. (The con-
tents of memory location 0x0100 are in the second column of
the MEMORY window.)

3) Click the left mouse button. Notice that this highlights and
identifies the field to be edited.

4) Type 00000000.

5) Press to enter the new value.

6) Press to conclude editing.

Try This: Here’s another method for editing data.

1) Make the CPU window the active window:

win CPU

↑ ↓

→ ← 2) Press the arrow keys until the field cursor (_) points to the contents of reg-
ister B15.

F9 3) Press F9 to highlight the contents of register B15.

4) Type ffff0000.

5) Press to enter the new value.

ESC 6) Press ESC to conclude editing.

 Define a Memory Map

2-29 An Introductory Tutorial to the C Source Debugger

Define a memory map

You can set up a memory map to tell the debugger which areas of memory it
can and can’t access. This is called memory mapping. When you invoked the
debugger for this tutorial, the debugger automatically read a default memory
map from the initialization batch file included in the sim6x directory. For the pur-
poses of the sample program, that’s fine (which is why this lesson was saved
for the end).

View the default memory map settings:

ml

Look in the COMMAND window display area—you’ll see a listing of the areas
that are currently mapped.

It’s easy to add new ranges to the map or delete existing ranges.

Change the memory map:

1) Use the MD (memory delete) command to delete the block of program
memory:

md 0x0080 0000

This deletes the block of memory beginning at address 0x0080 0000.

2) Use the MA (memory add) command to define a new block of program
memory and a new block of data memory:

ma 0x0080 0000,0x20,ROM

ma 0x0080 0100,0x7f,RAM

Define Your Own Command String / Close the Debugger

 2-30

Define your own command string

If you find that you often enter a command with the same parameters, or often
enter the same commands in sequence, you will find it helpful to have a short-
hand method for entering these commands. The debugger provides an alias-
ing feature that allows you to do this.

This lesson shows you how you can define an alias to set up a memory map,
defining the same map that was defined in the previous lesson.

Define an alias for setting up the memory map:

1) Use the ALIAS command to associate a nickname with the commands
used for defining a memory map:

alias mymap,”mr;ma 0x0080 0000,0x20,ROM;
ma 0x0080 0100,0x7f,RAM;ml”

(Note: Because of space constraints, the command is shown on two
lines.)

2) Now, to use this memory map, just enter the alias name:

mymap

This is equivalent to entering the following four commands:

mr
ma 0x0080 0000,0x20,ROM
ma 0x0080 0100,0x7f,RAM
ml

Close the debugger

This is the end of the tutorial—close the debugger.

Close the debugger and return to the operating system:

quit

3-1The Debugger Display

The Debugger Display

The ’C6x C source debugger has a window-oriented display. This chapter
shows what windows look like and describes the basic types of windows that
you’ll use.

Topic Page

3.1 Debugging Modes and Default Displays 3-2.

3.2 Descriptions of the Different Kinds of Windows 3-6.
and Their Contents

3.3 Cursors 3-20.

3.4 The Active Window 3-21.

3.5 Manipulating a Window 3-24.

3.6 Manipulating a Window’s Contents 3-29.

3.7 Closing a Window 3-32.

Chapter 3

Debugging Modes and Default Displays

 3-2

3.1 Debugging Modes and Default Displays

The debugger has four debugging modes:

� Auto
� Assembly
� Mixed
� Minimal

Each mode changes the debugger display by adding or hiding specific win-
dows. This section shows the default displays and the windows that the debug-
ger automatically displays for these modes. These modes cannot be used
within the profiling environment; the COMMAND, PROFILE, DISASSEMBLY,
and FILE windows are the only available windows in the profiling environment.

Auto mode

In auto mode, the debugger automatically displays whatever type of code is
currently running: assembly language or C. This is the default mode; when you
first invoke the debugger, you’ll see a a display similar to Figure 3–1. Auto
mode has two types of displays:

� When the debugger is running assembly language code, you’ll see an
assembly display similar to the one in Figure 3–1. The DISASSEMBLY
window displays the reverse assembly of memory contents.

� When the debugger is running C code, you’ll see a C display similar to the
one in Figure 3–2. (This assumes that the debugger can find your C
source file to display in the FILE window. If the debugger can’t find your
source, it switches to mixed mode.)

When you’re running assembly language code, the debugger automatically
displays windows as described for assembly mode.

When you’re running C code, the debugger automatically displays the
COMMAND, CALLS, and FILE windows. If you want, you can also open a
WATCH window and DISP windows.

Debugging Modes and Default Displays

3-3The Debugger Display

Figure 3–1. Typical Assembly Display (for Auto Mode and Assembly Mode)

A0 00000000

B0 00000000

A1 00000000

B1 00000000

A2 00000000

B2 00000000

A3 00000000

B3 00000000

A4 00000000

B4 00000000

A5 00000000

B5 00000000

A6 00000000

B6 00000000

A7 00000000

CPU

MEMORYCOMMAND

>>>

Loading sample.out

 206 Symbols loaded

Done

00000000 00000000 00000000 00000000

0000000c 00000000 00000000 00000000

00000018 00000000 00000000 00000000

00000024 00000000 00000000 00000000

00000030 00000000 00000000 00000000

0000003c 00000000 00000000 00000000

Load Break Watch Memory Color MoD e Run=F5 Step=F8 Next=F10

DISASSEMBLY
00007cdc 00000000 NOP

00007ce0 07d5142a c_int00 MVK,S2 0xfffaa28,B15

00007ce4 0780606a MVKH,S2 0xc00000,B15

00007ce8 0007fe2a MVK,S2 0x0ffc,B0

00007cec 0000006a MVKH,S2 0x0000,B0

00007cf0 07bc01e2 ADD,S2 B0,B15,B15

00007cf4 07bf07a2 AND,S2 0xfffffff8,B15,B15

00007cf8 0700002a MVK,S2 0x0000,B14

00007cfc 0700606a MVKH,S2 0xc00000,B14

00007d00 013fe428 MVK,S1 0x7fc8,A2

00007d04 01000068 MVKH,S1 0x0000,A2

00007d08 0fffd410 B,S1 auto_init

00007d0c 00004000 NOP 3

00007d10 003e8c28 MVK,S1 0x7d18,A0

00007d14 00000068 MVKH,S1 0x0000,A0

Figure 3–2. Typical C Display (for Auto Mode Only)

COMMAND

>>>

file sample.c

go main

CALLS

1: main()

00042 double d;

00043 int ai[10];

00044 int aai[10][5];

00045 char ac[10];

00046 int *pi;

00047 char *xpc;

00048

00049 extern call();

00059 exter meminit();

00060

00061 main()

00062 {

00063 int i = 0;

00064 int j = 0; k = 0;

00065 meminit();

FILE:sample.c

Load Break Watch Memory Color MoD e Run=F5 Step=F8 Next=F10

Debugging Modes and Default Displays

 3-4

Assembly mode

Assembly mode is for viewing assembly language programs only. In this
mode, you’ll see a display similar to the one shown in Figure 3–1. When you’re
in assembly mode, you’ll always see the assembly display, regardless of
whether C or assembly language is currently running.

Windows that are automatically displayed in assembly mode include the
MEMORY window, the DISASSEMBLY window, the CPU register window, and
the COMMAND window. If you choose, you can also open a WATCH window
in assembly mode.

Mixed mode

Mixed mode is for viewing assembly language and C code at the same time.
Figure 3–3 shows the default display for mixed mode.

Figure 3–3. Typical Mixed Display (for Mixed Mode Only)

DISASSEMBLY

CALLS

1: main()

00006930 073d94f4 main: STW.D2 A14,*B15––[12]

00006934 003ce2f4 STW.D2 A0,*+B15[7]

00006938 053d02f4 STW.D2 A10,*+B15[8]

0000693c 05bd22f4 STW.D2 A11,*+B15[9]

00006940 063d42f4 STW.D2 A12,*+B15[10]

00006944 06bd62f4 STW.D2 A13,*+B15[11]

00006948 000000f8 ZERO.L1 A0

0000694c 003c62f4 STW.D2 A0,*+B15[3]

00006950 000000f8 ZERO.L1 A0

Load Break Watch Memory Run=F5 Step=F8 Next=F10Color

CPU
A0 00007d28 B0 00000ffc

A1 00000000 B1 00000000

A2 00007fc8 B2 00000000

A3 00000070 B3 00000000

A4 00000009 B4 00000000

A5 00000014 B5 00000000

A6 0000003c B6 00000000

A7 00000000 B7 00000000

A8 00000000 B8 00000000

COMMAND

>>>

file sample.c

go main

mix

FILE: sample.c
0060 {

0061 str.f1 += str.f2 – value;

0062 }

0063

0064 main()

0065 {

0066 int i = 0;

MEMORY

00000000 00000000 00000000 00000000

0000000c 00000000 00000000 00000000

00000018 00000000 00000000 00000000

00000024 00000000 00000000 00000000

In mixed mode, the debugger displays all windows that can be displayed in
auto and assembly modes, regardless of whether you’re currently running
assembly language or C code. This is useful for finding bugs in C programs
that exploit specific architectural features of the ’C6x.

Debugging Modes and Default Displays

3-5The Debugger Display

Minimal mode

Minimal mode allows you to query the target system without displaying any
additional information. You can display the contents of CPU registers, memory
addresses, or symbols within the COMMAND window by using the WA, DISP,
and ?/EVAL commands (described on page 7-3). You can use any of the stan-
dard debugger commands in the COMMAND window. If you use the C, ASM,
or MIX commands, the debugging mode changes to the auto, assembly, or
mixed mode, respectively. To return to minimal mode, use the MINIMAL com-
mand.

Restrictions associated with debugging modes

The assembly language code that the debugger shows you is the disassembly
(reverse assembly) of the memory contents. If you load object code into
memory, the assembly language code is the disassembly of that object code.
If you don’t load an object file, the disassembly won’t be very useful.

Some commands are valid only in certain modes, especially if a command
applies to a window that is visible only in certain modes. In this case, entering
the command causes the debugger to switch to the mode that is appropriate
for the command. This applies to these commands:

dasm func mem

calls file disp

Descriptions of the Different Kinds of Windows and Their Contents

 3-6

3.2 Descriptions of the Different Kinds of Windows and Their Contents

The debugger can show several types of windows. This section lists the
various types of windows and describes their characteristics.

Every window is identified by a name in its upper left corner. Each type of
window serves a specific purpose and has unique characteristics. There are
eight different windows, divided into these general categories:

� The COMMAND window provides an area for typing in commands and for
displaying various types of information, such as progress messages, error
messages, or command output.

� Code-display windows display assembly language or C code. There are
three code-display windows:

� The DISASSEMBLY window displays the disassembly (assembly
language version) of memory contents.

� The FILE window displays any text file that you want to display; its
main purpose, however, is to display C source code.

� The CALLS window identifies the current function and previous func-
tion calls (when C code is running).

� The PROFILE window displays statistics about code execution.

� Data-display windows are for observing and modifying various types of
data. There are four data-display windows:

� A MEMORY window displays the contents of a range of memory. You
can display multiple MEMORY windows at one time.

� The CPU window displays the contents of ’C6x registers.

� A DISP window displays the contents of an aggregate type such as an
array or structure, showing the values of the individual members. You
can display up to 120 DISP windows at one time.

� A WATCH window displays selected data such as variables, specific
registers, or memory locations. You can display multiple WATCH win-
dows at one time.

You can move or resize any of these windows; you can also edit any value in
a data-display window. Before you can perform any of these actions, however,
you must select the window you want to move, resize, or edit and make it the
active window. For more information about making a window active, see
Section 3.4, The Active Window.

The remainder of this section describes the individual windows.

Descriptions of the Different Kinds of Windows and Their Contents

3-7The Debugger Display

COMMAND window

COMMAND

>>>

Loading sample.out

Done

file sample.c

go mainCommand
line

Command line
cursor

Display
area

Purpose � Provides an area for entering commands

� Provides an area for echoing commands and displaying
command output, errors, and messages

Editable? Command line is editable; command output isn’t

Modes All modes

Created Automatically

Affected by � All commands entered on the command line
� All commands that display output in the display area
� Any condition or input that creates an error

The COMMAND window has two parts:

� Command line. This is where you enter commands. When you want to en-
ter a command, just type—no matter which window is active. The debug-
ger keeps a list of the last 50 commands that you entered. You can select
and reenter commands from the list without retyping them. (For more in-
formation, see Using the command history, page 4-5.)

� Display area. This area of the COMMAND window echoes the command
that you entered, shows any output from the command, and displays
debugger messages.

For more information about the COMMAND window and entering commands,
refer to Chapter 4, Entering and Using Commands.

Descriptions of the Different Kinds of Windows and Their Contents

 3-8

DISASSEMBLY window

Memory
address

Object
code

Disassembly (assembly language
constructed from object code)

DISASSEMBLY

Current PC

00007cdc 00000000 NOP

00007ce0 07d5142a c_int00 MVK,S2 0xfffaa28,B15

00007ce4 0780606a MVKH,S2 0xc00000,B15

00007ce8 0007fe2a MVK,S2 0x0ffc,B0

00007cec 0000006a MVKH,S2 0x0000,B0

00007cf0 07bc01e2 ADD,S2 B0,B15,B15

00007cf4 07bf07a2 AND,S2 0xfffffff8,B15,B15

00007cf8 0700002a MVK,S2 0x0000,B14

00007cfc 0700606a MVKH,S2 0xc00000,B14

Purpose Displays the disassembly (or reverse assembly) of memory
contents

Editable? No; pressing the edit key (F9) or the left mouse button sets
a software breakpoint on an assembly language statement

Modes Auto (assembly display only), assembly, and mixed

Created Automatically

Affected by � DASM and ADDR commands
� Breakpoint and run commands

Within the DISASSEMBLY window, the debugger highlights:

� The statement that the program counter (PC) is pointing to (if that line is
in the current display)

� Any statements with software breakpoints

� The address and object code fields for all statements associated with the
current C statement, as shown below

Current PC
FILE: t1.c

0061 str.f1 += str.f2 – value;

0062 }

0063

0064 main()

These assembly
language statements

are associated with
this C statement

DISASSEMBLY

00006930 073d94f4 main: STW.D2 A14,*B15––[12]

00006934 003ce2f4 STW.D2 A0,*+B15[7]

00006938 053d02f4 STW.D2 A10,*+B15[8]

0000693c 05bd22f4 STW.D2 A11,*+B15[9]

00006940 063d42f4 STW.D2 A12,*+B15[10]

00006944 06bd62f4 STW.D2 A13,*+B15[11]

Descriptions of the Different Kinds of Windows and Their Contents

3-9The Debugger Display

FILE window

FILE: sample.c

00001 struct xxx { int a,b,c; int f1 : 2; int f2 : 4; struct xx

00002 str, astr[10], aastr[

00003 union uuu { int u1, u2, u3, u4, u5[6]; struct xxx u6; }

00004 struct zzz { int b1,b2,be,b4,b5; struct xxx q1[2],q2; str

00005 big1, *big2, big3[6];

00006 struct { int x,y,z,; int **ptr; float *fptr; char ra[5

00007 enum yyy { RED, GREEN, BLUE } genum, *penum, aenum[5][4]

Text
file

Purpose Shows any text file you want to display

Editable? No; if the FILE window displays C code, pressing the edit key
(F9) or the left mouse button sets a software breakpoint on
a C statement

Modes Auto (C display only) and mixed

Created � With the FILE command
� Automatically when you’re in auto or mixed mode and

your program begins executing C code

Affected by � FILE, FUNC, and ADDR commands
� Breakpoint and run commands

You can use the FILE command to display the contents of any file within the
FILE window, but this window is especially useful for viewing C source files.
Whenever you single-step a program or run a program and halt execution, the
FILE window automatically displays the C source associated with the current
point in your program. This overwrites any other file that may have been
displayed in the window.

Within the FILE window, the debugger highlights:

� The statement that the PC is pointing to (if that line is in the current display)
� Any statements where you’ve set a software breakpoint

Descriptions of the Different Kinds of Windows and Their Contents

 3-10

CALLS window

CALLS

3: subx()

2: call()

1: main() Current function

Order of functions called

Names of functions called

is at top of list

Purpose Lists the function you’re in, its caller, and its caller, etc., as
long as each function is a C function

Editable? No; pressing the edit key (F9) or the left mouse button
changes the FILE display to show the source associated with
the called function

Modes Auto (C display only) and mixed

Created � Automatically when you’re displaying C code
� With the CALLS command if you closed the CALLS

window

Affected by Run and single-step commands

The display in the CALLS window changes automatically to reflect the latest
function call.

CALLS

1: **UNKNOWN

CALLS

1: main()

If you haven’t run any code, no functions
have been called yet. You’ll also see this if

you’re running code but are not currently run-
ning a C function.

In C programs, the first C function is main.

As your program runs, the contents of the
CALLS window change to reflect the cur-
rent routine that you’re in and where the

routine was called from. When you exit a
routine, its name is popped from the

CALLS list.

CALLS

2: xcall()

1: main()

CALLS

1: main()

Descriptions of the Different Kinds of Windows and Their Contents

3-11The Debugger Display

If a function name is listed in the CALLS window, you can easily display the
function code in the FILE window:

1) Point the mouse cursor at the appropriate function name that is listed in
the CALLS window.

2) Click the left mouse button. This displays the selected function in the FILE
window.

1) Make the CALLS window the active window (see Section 3.4 on page
3-21).

↓ ↑ 2) Use the arrow keys to move up/down through the list of function names
until the appropriate function is indicated.

F9 3) Press F9 . This displays the selected function in the FILE window.

You can close and reopen the CALLS window.

� Closing the window is a two-step process:

1) Make the CALLS window the active window.
2) Press F4 .

� To reopen the CALLS window after you’ve closed it, enter the CALLS
command. The format for this command is:

calls

Descriptions of the Different Kinds of Windows and Their Contents

 3-12

PROFILE window

PROFILE
 Area Name Count Inclusive Incl–Max

CL <sample>#55 2 12 6

CF xcall() 1 23 23

AR main()–00006944 1 6 6

CR <sample>#72–77 1 102 102

AL c_int00 1 7 7

AL 00007cf8 Disabled

Profile
areas

Profile data

Purpose Displays statistics collected during a profiling session

Editable? No

Modes Auto

Created By invoking the debugger with the –profile option

Affected by � The PF and PQ commands
� Any commands on the View menu
� Clicking in the header area of the window

The PROFILE window is visible only when you are in the profiling environment.
The illustration above shows the window with a default set of data, but the
display can be modified to show specific sets of data collected during a profil-
ing session.

Note that within the profiling environment, the only other available windows are
the COMMAND window, the DISASSEMBLY window, and the FILE window.

For more information about the PROFILE window (and about profiling in gen-
eral), refer to Chapter 10, Profiling Code Execution.

Descriptions of the Different Kinds of Windows and Their Contents

3-13The Debugger Display

MEMORY windows

MEMORY

Data

00000100 06be14f6 063de2f6 05bdc2f6

0000010c 053da2f6 06bd82f4 063d62f4

00000118 05bd42f5 00000000 05080059

00000124 053d22f4 000f8411 05a80064

00000130 01280064 00000001 00000000

0000013c 00000000 0000ae29 003d02f5

Addresses

Purpose Displays the contents of memory

Editable? Yes—you can edit the data (but not the addresses)

Modes Auto (assembly display only), assembly, and mixed

Created � Automatically (the default MEMORY window only)

� With the MEM command and a unique window name

Affected by MEM command

A MEMORY window has two parts:

� Addresses. The first column of numbers identifies the addresses of the
first column of displayed data. No matter how many columns of data you
display, only one address column is displayed. Each address in this
column identifies the address of the data immediately to its right.

� Data. The remaining columns display the values at the listed addresses.
The data is shown in hexadecimal format as 32-bit words. You can display
more data by making the window wider and/or longer.

The MEMORY window above has three columns of data, and each new
address is incremented by 12 (0xC). Although the window shows three
columns of data, there is still only one column of addresses; the first value
is at address 0x0000 0100, the second at address 0x0000 0104, etc.; the
fourth value (first value in the second row) is at address 0x0000 010C, the
fifth at address 0x0000 0110, etc.

As you run programs, some memory values change as the result of program
execution. The debugger highlights the changed values. Depending on how
you configure memory for your application, some locations may be invalid or
unconfigured. The debugger also highlights these locations (by default, it
shows these locations in red).

Descriptions of the Different Kinds of Windows and Their Contents

 3-14

The debugger opens one MEMORY window by default. You can open any
number of additional MEMORY windows to display different ranges of
memory. Refer to Figure 3–4.

Figure 3–4. Default and Additional MEMORY Windows

MEMORY RANGE3
00000800 00008000 00bc82a4 00006000

0000080c 80000490 00008000 00000f90

0000

0000

0000

0000

MEMORY RANGE2
00001208 0180012a 02881059 0180006a

00001214 009408d9 01bc7c43 020000aa

0000

0000

0000

0000

MEMORY RANGE 1
00007f80 00c0084c 00008000 00000004

00007f8c 00c00664 00000000 00000004

0000

0000

0000

0000

MEMORY
00000100 06be14f6 063de2f6 05bdc2f6

0000010c 053da2f6 06bd82f4 063d62f4

00000118 05bd42f5 00000000 05080059

00000124 053d22f4 000f8411 05a80064

00000130 01280064 00000001 00000000

0000013c 00000000 0000ae29 003d02f5

The default
MEMORY
window

Additional
MEMORY windows

To open an additional MEMORY window or to display another range of
memory in a MEMORY window, use the MEM command.

� Opening an additional MEMORY window

To open an additional MEMORY window, enter the MEM command with a
unique window name:

mem address, [display format] , window name

For example, if you want to open a new MEMORY window starting at
address 0x8000 named RANGE1, enter:

mem 0x8000,,RANGE1

This displays a new window, labeled MEMORY RANGE1, showing the
contents of memory starting at the address 0x8000.

� Displaying a new memory range in a MEMORY window

You can use the MEM command to display a different memory range in a
window:

mem address, [display format] , window name

The debugger displays the contents of memory at address in the first data
position in your MEMORY window. The end of the range is defined by the
size of the window.

The window name parameter is optional if you are displaying a different
memory range in the default MEMORY window. Use the window name pa-
rameter when you want display a new memory range in one of the addi-
tional MEMORY windows.

Descriptions of the Different Kinds of Windows and Their Contents

3-15The Debugger Display

The display format parameter for the MEM command is optional. When used,
the data is displayed in the selected format as shown in Table 7–1 on
page 7-17.

You can close and reopen any of the MEMORY windows as often as you like.

� Closing a MEMORY window

Closing a window is a two-step process:

1) Make the appropriate MEMORY window the active window (see Sec-
tion 3.4, on page 3-21).

2) Press F4 .

� Reopening a MEMORY window

To reopen an additional MEMORY window after you’ve closed it, enter the
MEM command with a unique window name. To reopen the default
MEMORY window, use the MEM command with no window name.

Descriptions of the Different Kinds of Windows and Their Contents

 3-16

CPU window

Register
name

Register
contents

CPU
A0 00006ce8 B0 00000000 A1 00000000

B1 00000000 A2 00000100 B2 00000000

A3 ffffffdd B3 00000001 A4 00000002

B4 00000100 A5 00000001 B5 00000000

The display changes
when you resize the

window

CPU
A0 00006ce8
B0 00000000
A1 00000000
B1 00000000
A2 00000100
B2 00000000
A3 ffffffdd
B3 00000001
A4 00000002
B4 00000100
A5 00000001
B5 00000000
A6 00007754
B6 00000000
A7 00000000
B7 00000000
A8 00000000
B8 00000000

Purpose Shows the contents of the ’C6x registers

Editable? Yes—you can edit the value of any displayed register

Modes Auto (assembly display only), assembly, and mixed

Created Automatically

Affected by Data-management commands

As you run programs, some values displayed in the CPU window change as
the result of program execution. The debugger highlights changed values.

Descriptions of the Different Kinds of Windows and Their Contents

3-17The Debugger Display

DISP windows

DISP: str

a 84

b 86

c 172

f1 1

f2 7

f3 0x18740001

f4 [...]

Structure
members

Member
values

This member is an array, and you
can display its contents in a sec-

ond DISP window

DISP: str.f4

[0] 44276127

[1] 1778712578

[2] 555492660

[3] 356713217

[4] 138412802

[5] 182452229

[6] 35659888

[7] 37749506

[8] 134742016

[9] 138412801

Purpose Displays the members of a selected structure, array, or
pointer, and the value of each member

Editable? Yes—you can edit individual values

Modes Auto (C display only), mixed, and minimal

Created With the DISP command

Affected by DISP command

A DISP window is similar to a WATCH window, but it shows the values of an
entire array or structure instead of a single value. Use the DISP command to
open a DISP window; the basic syntax is:

disp expression

Data is displayed in its natural format:

� Integer values are displayed in decimal.
� Floating-point values are displayed in floating-point format.
� Pointers are displayed as hexadecimal addresses (with a 0x prefix).
� Enumerated types are displayed symbolically.

If any of the displayed members are arrays, structures, or pointers, you can
bring up additional DISP windows to display their contents—up to 120 DISP
windows can be open at once.

Descriptions of the Different Kinds of Windows and Their Contents

 3-18

WATCH windows

WATCH

1: A0 0x00007f24

2: X+X 4

3: PC 0x000079c0

Watch index

Label Current value

Purpose Displays the values of selected expressions

Editable? Yes—you can edit the value of any expression whose value
corresponds to a single storage location (in registers or
memory). In the window above, for example, you could edit
the value of PC but couldn’t edit the value of X+X.

Modes All modes

Created With the WA command

Affected by WA, WD, and WR commands

A WATCH window helps you track the values of arbitrary expressions, vari-
ables, and registers. Although the CPU window displays register contents, you
may not be interested in the values of all these registers. In this situation, it is
convenient to use the WATCH window to track the values of the specific regis-
ters you’re interested in.

To display the values of expressions, variables, or registers, use the WA
command; the syntax is:

wa expression [,[label], [display format], window name]]

� WA adds expression to the WATCH window. (If there’s no WATCH window,
then WA also opens a WATCH window.)

� The label parameter is optional. When used, it provides a label for the
watched entry. If you don’t use a label, the debugger displays the expres-
sion in the label field.

� The display format parameter is optional. When used, the data is dis-
played in the selected format as shown in Table 7–1 on page 7-17.

� If you omit the window name parameter, the debugger displays the ex-
pression in the default WATCH window (labeled WATCH). You can open
additional WATCH windows by using the window name parameter. When
you open an additional WATCH window, the debugger appends the win-
dow name to the WATCH window label. You can create as many WATCH
windows as you need.

Descriptions of the Different Kinds of Windows and Their Contents

3-19The Debugger Display

To delete individual entries from a WATCH window, use the WD command with
the appropriate window name. To delete all entries at once and close a WATCH
window, use the WR command with the appropriate window name. Note that
you don’t need to specify a window name if you are deleting items from the de-
fault WATCH window.

Cursors

 3-20

3.3 Cursors

The debugger display has three types of cursors:

� The command-line cursor is a block-shaped cursor that identifies the cur-
rent character position on the command line. When the COMMAND win-
dow is active (see Section 3.4, The Active Window), arrow keys affect the
position of this cursor.

COMMAND

>>>

load sample

Loading sample.out

Done

file sample.c

go main

Command line cursor

� The mouse cursor is a block-shaped cursor that tracks mouse movements
over the entire display. This cursor is controlled by the mouse driver in-
stalled on your system; if you haven’t installed a mouse, you won’t see a
mouse cursor on the debugger display.

� The current-field cursor identifies the current field in the active window. On
PCs, this is the hardware cursor that is associated with your graphics card.
Arrow keys do affect this cursor’s movement.

Current field cursor

CPU
A0 00006ce8 B0 00000000 A1 00000000

B1 00000000 A2 00000100 B2 00000000

A3 ffffffdd B3 00000001 A4 00000002

B4 00000100 A5 00000001 B5 00000000

The Active Window

3-21The Debugger Display

3.4 The Active Window

The windows in the debugger display aren’t fixed in their position or in their
size. You can resize them, move them around, and, in some cases, close
them. The window that you’re going to move, resize, or close must be active.

You can move, resize, zoom, or close only one window at a time; thus, only one
window at a time can be the active window. Whether or not a window is active
doesn’t affect the debugger’s ability to update information in a window—it
affects only your ability to manipulate a window.

Identifying the active window

The debugger highlights the active window. When windows overlap on your
display, the debugger moves the active window to the top of other windows.

You can alter the active window’s border style and colors if you wish;
Figure 3–5 illustrates the default appearance of an active window and an
inactive window.

Figure 3–5. Default Appearance of an Active and an Inactive Window

COMMAND

>>>

load sample

Loading sample.out

Done

file sample.c

go main

COMMAND

>>>

load sample

Loading sample.out
This window is

highlighted to show
that it is active

This window is not
highlighted and is

not active

An active window (default appearance)

An inactive window (default appearance)

Note: On monochrome monitors, the border and selection corner are highlighted as shown in
the illustration. On color monitors, the border and selection corner are highlighted as
shown in the illustration, but they also change color (by default, they change from white to
yellow when the window becomes active).

The Active Window

 3-22

Selecting the active window

You can use one of several methods for selecting the active window:

1) Point to any location within the boundaries or on any border of the desired
window.

2) Click the left mouse button.

Note that if you point within the window, you might also select the current field.
For example:

� If you point inside the CPU window, then the register you’re pointing at
becomes active, and the debugger treats any text that you type as a new
register value. If you point inside the MEMORY window, then the address
value you’re pointing at becomes active and the debugger treats any text
that you type as a new memory value.

Press ESC to get out of this.

� If you point inside the DISASSEMBLY or FILE window, you’ll set a break-
point on the statement you’re pointing to.

Press the button again to clear the breakpoint.

F6 This key cycles through the windows on your display, making each one active
in turn and making the previously active window inactive. Pressing this key
highlights one of the windows, showing you that the window is active. Pressing

F6 again makes a different window active. Press F6 as many times as nec-
essary until the desired window becomes the active window.

win The WIN command allows you to select the active window by name. The
format of this command is:

win WINDOW NAME

Note that the WINDOW NAME is in uppercase (matching the name exactly as
displayed). You can spell out the entire window name, but you really need to
specify only enough letters to identify the window.

For example, to select the DISASSEMBLY window as the active window, you
can enter either of these two commands:

win DISASSEMBLY
or win DISA

The Active Window

3-23The Debugger Display

If several windows of the same type are visible on the screen, don’t use the
WIN command to select one of them.

If you supply an ambiguous name (such as C, which could stand for CPU or
CALLS), the debugger selects the first window it finds whose name matches
the name you supplied. If the debugger doesn’t find the window you asked for
(because you closed the window or misspelled the name), then the WIN
command has no effect.

Manipulating a Window

 3-24

3.5 Manipulating a Window

A window’s size and its position in the debugger display aren’t fixed—you can
resize and move windows.

Note:

You can resize or move any window, but first the window must be active. For
information about selecting the active window, see Section 3.4 on page 3-21.

Resizing a window

The minimum window size is three lines by four characters. The maximum
window size varies, depending on which screen size option you’re using, but
you can’t make a window larger than the screen.

There are two basic ways to resize a window:

� By using the mouse
� By using the SIZE command

1) Point to the lower right corner of the window. This corner is highlighted—
here’s what it looks like:

COMMAND

>>>

load sample

Loading sample.out

Done Lower right corner
(highlighted)

2) Grab the highlighted corner by pressing one of the mouse buttons; while
pressing the button, move the mouse in any direction. This resizes the
window.

3) Release the mouse button when the window reaches the desired size.

Manipulating a Window

3-25The Debugger Display

size The SIZE command allows you to size the active window. The format of this
command is:

size [width, length]

You can use the SIZE command in one of two ways:

Method 1 Supply a specific width and length.

Method 2 Omit the width and length parameters and use arrow keys to
interactively resize the window.

SIZE, method 1: Use the width and length parameters. Valid values for the
width and length depend on the screen size and the window position on the
screen. If the window is in the upper left corner of the screen, the maximum
size of the window is the same as the screen size minus one line. (The extra
line is needed for the menu bar.) For example, if the screen size is 80 charac-
ters by 25 lines, the largest window size is 80 characters by 24 lines.

If a window is in the middle of the display, you can’t size it to the maximum
height and width—you can size it only to the right and bottom screen borders.
The easiest way to make a window as large as possible is to zoom it, as
described on page 3-26.

For example, if you want to use commands to make the CALLS window 8
characters wide by 20 lines long, you could enter:

win CALLS
size 8, 20

SIZE, method 2: Use arrow keys to interactively resize the window. If you
enter the SIZE command without width and length parameters, you can use
arrow keys to size the window:

↓ Makes the active window one line longer
↑ Makes the active window one line shorter
← Makes the active window one character narrower
→ Makes the active window one character wider

When you’re finished using the cursor keys, you must press or .

For example, if you want to make the CPU window three lines longer and two
characters narrower, you can enter:

win CPU
size

↓ ↓ ↓ ← ← ESC

Manipulating a Window

 3-26

Zooming a window

Another way to resize the active window is to zoom it. Zooming a window
makes it as large as possible, so that it takes up the entire display (except for
the menu bar) and hides all the other windows. Unlike the SIZE command,
zooming is not affected by the window’s position in the display.

To unzoom a window, repeat the same steps you used to zoom it. This will re-
turn the window to its prezoom size and position.

There are two basic ways to zoom or unzoom a window:

� By using the mouse
� By using the ZOOM command

1) Point to the upper left corner of the window. This corner is highlighted—
here’s what it looks like:

COMMAND

>>>

load sample

Loading sample.out

go main

Upper left corner
(highlighted)

2) Click the left mouse button.

zoom You can also use the ZOOM command to zoom/unzoom the window. The
format for this command is:

zoom

Manipulating a Window

3-27The Debugger Display

Moving a window

The windows in the debugger display don’t have fixed positions—you can
move them around.

There are two ways to move a window:

� By using the mouse
� By using the MOVE command

1) Point to the left or top edge of the window.

COMMAND

>>>

load sample

Loading sample.out

go main

Point to the top edge
or the left edge

2) Press the left mouse button but don’t release it; now move the mouse in
any direction.

3) Release the mouse button when the window is in the desired position.

move The MOVE command allows you to move the active window. The format of this
command is:

move [X position, Y position [, width, length]]

You can use the MOVE command in one of two ways:

Method 1 Supply a specific X position and Y position.

Method 2 Omit the X position and Y position parameters and use arrow
keys to interactively resize the window.

Manipulating a Window

 3-28

MOVE, method 1: Use the X position and Y position parameters. You can
move a window by defining a new XY position for the window’s upper left cor-
ner. Valid X and Y positions depend on the screen size and the window size.
X positions are valid if the X position plus the window width in characters is less
than or equal to the screen width in characters. Y positions are valid if the Y
position plus the window height is less than or equal to the screen height in
lines.

For example, if the window is 10 characters wide and 5 lines high and the
screen size is 80 x 25, the command move 70, 20 would put the lower right-
hand corner of the window in the lower right-hand corner of the screen. No X
value greater than 70 or Y value greater than 20 is valid in this example.

Note:

If you choose, you can resize a window at the same time you move it. To do
this, use the width and length parameters in the same way that they are used
for the SIZE command (see page 3-25).

MOVE, method 2: Use arrow keys to interactively move the window. If you
enter the MOVE command without X position and Y position parameters, you
can use arrow keys to move the window:

↓ Moves the active window down one line
↑ Moves the active window up one line
← Moves the active window left one character position
→ Moves the active window right one character position

When you’re finished using the cursor keys, you must press or .

For example, if you want to move the COMMAND window up two lines and
right five characters, you can enter:

win COM
move

↑ ↑ → → → → → ESC

Manipulating a Window’s Contents

3-29The Debugger Display

3.6 Manipulating a Window’s Contents

Although you may be concerned with changing the way windows appear in the
display—where they are and how big/small they are—you’ll usually be
interested in something much more important: what’s in the windows. Some
windows contain more information than can be displayed on a screen; others
contain information that you’d like to change. This section tells you how to view
the hidden portions of data within a window and which data can be edited.

Note:

You can scroll and edit only the active window. For information, see Sec-
tion 3.4 on page 3-21.

Scrolling through a window’s contents

If you resize a window to make it smaller, you may hide information. Some-
times, a window contains more information than can be displayed on a screen.
In these cases, the debugger allows you to scroll information up and down
within the window.

There are two ways to view hidden portions of a window’s contents:

� You can use the mouse to scroll the contents of the window.
� You can use function keys and arrow keys.

You can use the mouse to point to the scroll arrows on the right-hand side of
the active window. This is what the scroll arrows look like:

FILE: sample.c
00038 extern call();

00039 extern meminit();

00040 main()

00041 {

00042 register int i = 0;

00043 int j = 0, k = 0;

00044

00045 meminit();

00046 for (i = 0, i , 0x50000; i++)

00047 {

00048 call(i);

00049 if (i & 1) j += i;

00050 aai[k][k] = j;

00051 if (!(i & 0xFFFF)) k++;

00052 }

Scroll up

Scroll down

Manipulating a Window’s Contents

 3-30

To scroll window contents up or down:

1) Point to the appropriate scroll arrow.

2) Press the left mouse button; continue to press it until the information you’re
interested in is displayed within the window.

3) Release the mouse button when you’re finished scrolling.

You can scroll up/down one line at a time by pressing the mouse button and
releasing it immediately.

In addition to scrolling, the debugger supports the following methods for
moving through a window’s contents.

PAGE UP The page-up key scrolls up through the contents of the active window, one
window length at a time. You can use CONTROL PAGE UP to scroll up
through an array of structures displayed in a DISP window.

PAGE DOWN The page-down key scrolls down through the contents of the active
window, one window length at a time. You can use CONTROL PAGE DOWN to
scroll down through an array of structures displayed in a DISP window.

HOME When the FILE window is active, pressing HOME adjusts the window’s con-
tents so that the first line of the text file is at the top of the window. You can’t
use HOME outside the FILE window.

END When the FILE window is active, pressing END adjusts the window’s con-
tents so that the last line of the file is at the bottom of the window. You can’t
use END outside the FILE window.

↑ Pressing this key moves the field cursor up one line at a time.

↓ Pressing this key moves the field cursor down one line at a time.

← → When a field is selected for editing, the ← and → keys move the cursor
within the field. You can use CONTROL ← or CONTROL → to move to the
next field except when the COMMAND window is active; in this case, the
cursor moves to the beginning of the preceding or next word.

Manipulating a Window’s Contents

3-31The Debugger Display

Editing the data displayed in windows

You can edit the data displayed in the MEMORY, CPU, DISP, and WATCH
windows by using an overwrite click-and-type method or by using commands
that change the values. This is described in detail in Section 7.3, Basic
Methods for Changing Data Values, page 7-4.

Note:

In the following windows, the click-and-type method of selecting data for edit-
ing— pointing at a line and pressing F9 or the left mouse button—does not
allow you to modify data.

� In the FILE and DISASSEMBLY windows, pressing F9 or the mouse but-
ton sets or clears a breakpoint on any line of code that you select. You can’t
modify text in a FILE or DISASSEMBLY window.

� In the CALLS window, pressing F9 or the mouse button shows the source
for the function named on the selected line.

� In the PROFILE window, pressing F9 has no effect. Clicking the mouse
button in the header displays a different set of data; clicking the mouse but-
ton on an area name shows the code associated with the area.

Closing a Window

 3-32

3.7 Closing a Window

The debugger opens various windows on the display according to the debug-
ging mode you select. When you switch modes, the debugger may close some
windows and open others. Additionally, you can choose to open DISP,
WATCH, and MEMORY windows.

Most of the windows remain open—you can’t close them. However, you can
close the CALLS, DISP, WATCH, and MEMORY windows. To close one of
these windows:

1) Make the appropriate window active.

2) Press F4 .

You can also close a WATCH window by using the WR command:

wr [window name]

When you close a window, the debugger remembers the window’s size and
position. The next time you open the window, it will have the same size and
position. That is, if you close the CALLS window and reopen it, it will have the
same size and position it did before you closed it. When you open a DISP,
WATCH, or MEMORY window, it will occupy the same position as the last one
of that type that you closed.

4-1Entering and Using Commands

Entering and Using Commands

The debugger provides you with several methods for entering commands:

� From the command line
� From the pulldown menus (using keyboard combinations or the mouse)
� With function keys
� From a batch file

Mouse use and function key use differ from situation to situation and are
described throughout this book whenever applicable. This chapter includes
specific rules that apply to entering commands and using pulldown menus.

Topic Page

4.1 Entering Commands From the Command Line 4-2.

4.2 Using the Menu Bar and the Pulldown Menus 4-7.

4.3 Using Dialog Boxes 4-11.

4.4 Entering Commands From a Batch File 4-13.

4.5 Defining Your Own Command Strings 4-17.

Chapter 4

Entering Commands From the Command Line

 4-2

4.1 Entering Commands From the Command Line

The debugger supports a complete set of commands that help you to control
and monitor program execution, customize the display, and perform other
tasks. These commands are discussed in the various sections throughout this
book, as they apply to the topic that is being discussed. Chapter 11, Summary
of Commands and Special Keys, summarizes all of the debugger commands
with an alphabetic reference.

Although there are a variety of methods for entering most of the commands,
all of the commands can be entered by typing them on the command line in
the COMMAND window. Figure 4–1 shows the COMMAND window.

Figure 4–1. The COMMAND Window

COMMAND

>>>

go main

step 50

Display
area

Command
line

The COMMAND window serves two purposes:

� The command line portion of the window provides you with an area for en-
tering commands. For example, the command line in Figure 4–1 shows
that a STEP command was typed in (but not yet entered).

� The display area provides the debugger with a space for echoing com-
mands, displaying command output, or displaying errors and messages
for you to read. For example, the command output in Figure 4–1 shows
the messages that are displayed when you first bring up the debugger and
also shows that a GO MAIN command was entered.

If you enter a command through an alternate method (using the mouse, a
pulldown menu, or function keys), the COMMAND window doesn’t echo
the entered command.

Entering Commands From the Command Line

4-3Entering and Using Commands

Typing in and entering commands

You can type a command at almost any time; the debugger automatically
places the text on the command line when you type. When you want to enter
a command, just type—no matter which window is active. You don’t have to
worry about making the COMMAND window active or moving the field cursor
to the command line. When you start to type, the debugger usually assumes
that you’re typing a command and puts the text on the command line (except
under certain circumstances, which are explained on the next page).
Commands themselves are not case sensitive, although some parameters
(such as window names) are.

To execute a command that you’ve typed, just press . The debugger then:

1) Echoes the command to the display area
2) Executes the command and displays any resulting output
3) Clears the command line when command execution completes

Once you’ve typed a command, you can edit the text on the command line with
these keystrokes:

To... Press...

Move back over text without erasing characters ← †

Move forward through text without erasing characters CONTROL L or → †

Move to the beginning of previous word without CONTROL ← †

erasing characters

Move to the beginning of next word without erasing CONTROL → †

characters

Move to the beginning of the line without erasing ALT ← †

characters

Move to the end of the line without erasing characters ALT → †

Move back over text while erasing characters CONTROL H or
BACK SPACE or DEL

Move forward through text while erasing characters SPACE

Insert text into the characters that are already on the INSERT

command line

† You can use the arrow keys only when the COMMAND window is selected.

Entering Commands From the Command Line

 4-4

Notes:

1) When the COMMAND window is not active, you cannot use the arrow
keys to move through or edit text on the command line.

2) Typing a command doesn’t make the COMMAND window the active
window.

Sometimes, you can’t type a command

At most times, you can press any alphanumeric or punctuation key on your
keyboard (any printable character); the debugger interprets this as part of a
command and displays the character on the command line. In a few instances,
however, pressing an alphanumeric key is not interpreted as information for
the command line.

� When you’re pressing the ALT key, typing certain letters causes the
debugger to display a pulldown menu.

� When a pulldown menu is displayed, typing a letter causes the debugger
to execute a selection from the menu.

� When you’re pressing the CONTROL key, pressing H or L moves the
command-line cursor backward or forward through the text on the com-
mand line.

� When you’re editing a field, typing enters a new value in the field.

� When you’re using the MOVE or SIZE command interactively, pressing
keys affects the size or position of the active window. Before you can enter
any more commands, you must press ESC to terminate the interactive
moving or sizing.

� When you’ve brought up a dialog box, typing enters a parameter value for
the current field in the box. See Section 4.3 on page 4-11 for more informa-
tion on dialog boxes.

Entering Commands From the Command Line

4-5Entering and Using Commands

Using the command history

The debugger keeps an internal list, or command history, of the commands
that you enter. It remembers the last 50 commands that you entered. If you
want to reenter a command, you can move through this list, select a command
that you’ve already executed, and reexecute it.

Use these keystrokes to move through the command history.

To... Press...

Move forward through the list of executed commands, one by one SHIFT TAB

Move backward through the list of executed commands, one by one TAB

Repeat the last command that you entered F2

As you move through the command history, the debugger displays the
commands, one by one, on the command line. When you see a command that
you want to execute, simply press to execute the command. You can also
edit these displayed commands in the same manner that you can edit new
commands, as described on page 4-3.

Clearing the display area

Occasionally, you may want to completely blank out the display area of the
COMMAND window; the debugger provides a command for this.

cls Use the CLS command to clear all displayed information from the display area.
The format for this command is:

cls

Entering Commands From the Command Line

 4-6

Recording information from the display area

The information shown in the display area of the COMMAND window can be
written to a log file. The log file is a system file that contains commands you’ve
entered, their results, and error or progress messages. To record this informa-
tion in a log file, use the DLOG command.

You can execute log files by using the TAKE command. When you use DLOG
to record the information from the display area of the COMMAND window, the
debugger automatically precedes all error or progress messages and com-
mand results with a semicolon to turn them into comments. This way, you can
easily reexecute the commands in your log file by using the TAKE command.

� To begin recording the information shown in the display area of the
COMMAND window, use:

dlog filename

This command opens a log file called filename that the information is
recorded into.

� To end the recording session, enter:

dlog close

If necessary, you can write over existing log files or append additional informa-
tion to existing files. The extended format for the DLOG command is:

dlog filename [,{a | w}]

The optional parameters of the DLOG command control how the log file is
created and/or used:

� Creating a new log file. If you use the DLOG command without one of
the optional parameters, the debugger creates a new file that it records the
information into. If you are recording to a log file already, entering a new
DLOG command and filename closes the previous log file and opens a
new one.

� Appending to an existing file. Use the a parameter to open an existing
file to which to append the information in the display area.

� Writing over an existing file. Use the w parameter to open an existing
file to write over the current contents of the file. Note that this is the default
action if you specify an existing filename without using either the a or w
option; you will lose the contents of an existing file if you don’t use the
append (a) option.

Using the Menu Bar and the Pulldown Menus

4-7Entering and Using Commands

4.2 Using the Menu Bar and the Pulldown Menus

In all four of the debugger modes, you’ll see a menu bar at the top of the screen.
The menu selections offer you an alternative method for entering many of the
debugger commands. Figure 4–2 points out the menu bar in a mixed-mode
display. There are several ways to use the selections on the menu bar, de-
pending on whether the selection has a pulldown menu or not.

Figure 4–2. The Menu Bar in the Basic Debugger Display

DISASSEMBLY

CALLS

1: main()

00006930 073d94f4 main: STW.D2 A14,*B15––[12]

00006934 003ce2f4 STW.D2 A0,*+B15[7]

00006938 053d02f4 STW.D2 A10,*+B15[8]

0000693c 05bd22f4 STW.D2 A11,*+B15[9]

00006940 063d42f4 STW.D2 A12,*+B15[10]

00006944 06bd62f4 STW.D2 A13,*+B15[11]

00006948 000000f8 ZERO.L1 A0

0000694c 003c62f4 STW.D2 A0,*+B15[3]

00006950 000000f8 ZERO.L1 A0

Load Break Watch Memory Run=F5 Step=F8 Next=F10Color

CPU
A0 00007d28 B0 00000ffc

A1 00000000 B1 00000000

A2 00007fc8 B2 00000000

A3 00000070 B3 00000000

A4 00000009 B4 00000000

A5 00000014 B5 00000000

A6 0000003c B6 00000000

A7 00000000 B7 00000000

A8 00000000 B8 00000000

COMMAND

>>>

file sample.c

go main

mix

FILE: sample.c
0060 {

0061 str.f1 += str.f2 – value;

0062 }

0063

0064 main()

0065 {

0066 int i = 0;

MEMORY

00000000 00000000 00000000 00000000

0000000c 00000000 00000000 00000000

00000018 00000000 00000000 00000000

00000024 00000000 00000000 00000000

Menu bar

Several of the selections on the menu bar have pulldown menus; if they could
all be pulled down at once, they’d look like Figure 4–3.

Note that the menu bar and associated pulldown menus occupy fixed positions
on the display. Unlike windows, you can’t move, resize, or cover the menu bar
or pulldown menus.

Figure 4–3. All of the Pulldown Menus (Basic Debugger Display)

Load
Load
Reload
Symbols

REstart
ReseT

File

Break
Add
Delete
Reset
List

Watch
Add
Delete
Reset

Color
Load
Save
Config

Border
Prompt

Memory
Add
Delete
Reset
List
Enable

Fill
Save

MoDe
C (auto)
Asm
Mixed
Mi Nimal

Using the Menu Bar and the Pulldown Menus

 4-8

Pulldown menus in the profiling environment

The debugger displays a different menu bar in the profiling environment:

mAp Mark Enable Disable Unmark View Stop–points ProfileLoad

The Load menu corresponds to the Load menu in the basic debugger environ-
ment. The mAp menu provides memory map commands available from the
basic Memory menu. The other entries provide access to profiling commands.

Using the pulldown menus

There are several ways to display the pulldown menus and then execute your
selections from them. Executing a command from a menu has the same effect
as executing a command by typing it in.

� If you select a command that has no parameters or only optional parame-
ters, the debugger executes the command as soon as you select it.

� If you select a command that has one or more required parameters, the
debugger displays a dialog box when you make your selection. A dialog
box offers you the chance to type in the parameters values for the com-
mand.

The following paragraphs describe several methods for selecting commands
from the pulldown menus.

Mouse method 1

1) Point the mouse cursor at one of the appropriate selections in the menu
bar.

2) Press the left mouse button, but don’t release the button.

3) While pressing the mouse button, move the mouse downward until your
selection is highlighted on the menu.

4) When your selection is highlighted, release the mouse button.

Using the Menu Bar and the Pulldown Menus

4-9Entering and Using Commands

Mouse method 2

1) Point the cursor at one of the appropriate selections in the menu bar.

2) Click the left mouse button. This displays the menu until you are ready to
make a selection.

 3) Point the mouse cursor at your selection on the pulldown menu.

4) When your selection is highlighted, click the left mouse button.

Keyboard method 1

ALT 1) Press the ALT key; don’t release it.

X 2) Press the key that corresponds to the highlighted letter in the selection
name; release both keys. This displays the menu and freezes it.

X 3) Press and release the key that corresponds to the highlighted letter of your
selection in the menu.

Keyboard method 2

ALT 1) Press the ALT key; don’t release it.

X 2) Press the key that corresponds to the highlighted letter in the selection
name; release both keys. This displays the menu and freezes it.

↓ ↑ 3) Use the arrow keys to move up and down through the menu.

4) When your selection is highlighted, press .

Escaping from the pulldown menus

� If you display a menu and then decide that you don’t want to make a selec-
tion from this menu, you can:

� Press ESC

or

� Point the mouse outside of the menu; press and then release the left
mouse button.

� If you pull down a menu and see that it’s not the menu you wanted, you
can point the mouse at another entry and press the left mouse button, or
you can use the ← and → keys to display adjacent menus.

Using the Menu Bar and the Pulldown Menus

 4-10

Using menu bar selections that don’t have pulldown menus

These three menu bar selections are single-level entries without pulldown me-
nus:

Run=F5 Step=F8 Next=F10

There are two ways to execute these choices.

1) Point the cursor at one of these selections in the menu bar.

2) Click the left mouse button.

This executes your choice in the same manner as typing in the associated
command without its optional expression parameter.

F5 Pressing this key is equivalent to typing in the RUN command without an
expression parameter.

F8 Pressing this key is equivalent to typing in the STEP command without an
expression parameter.

F10 Pressing this key is equivalent to typing in the NEXT command without an
expression parameter.

For more information about the RUN, STEP, and NEXT commands, see Sec-
tion 6.5, Running Your Programs, page 6-10.

Using Dialog Boxes

4-11Entering and Using Commands

4.3 Using Dialog Boxes

Many of the debugger commands have parameters. When you execute these
commands from pulldown menus, you must have some way of providing
parameter information. The debugger allows you to do this by displaying a
dialog box that asks for this information.

Entering text in a dialog box

Entering text in a dialog box is much like entering commands on the command
line. For example, the Add entry on the Watch menu is equivalent to entering
the WA command. This command has four parameters:

wa expression [,[label] [, [display format] [, window name]]]

When you select Add from the Watch menu, the debugger displays a dialog
box that asks you for this parameter information. The dialog box looks like this:

Label

Expression

Format

Watch Add

<<OK>> <C ancel>
Window name

You can enter an expression just as you would if you typed the WA command.
After you enter an expression, press TAB or ↓ . The cursor moves down to
the next parameter:

Label

Expression

Format

Watch Add

<<OK>> <C ancel>
Window name

MY_VAR

When the dialog box displays more than one parameter, you can use the arrow
keys to move from parameter to parameter. You can omit entries for optional
parameters, but the debugger won’t allow you to skip required parameters.

In the case of the WA command, the label, format, and window name parame-
ters are optional. If you want to enter one of these parameters, you can do so;
if you don’t want to use these optional parameters, don’t type anything in their
fields—just continue to the next parameter.

Using Dialog Boxes

 4-12

Modifying text in a dialog box is similar to editing text on the command line:

� When you display a dialog box for the first time during a debugging ses-
sion, the parameter fields are empty. When you bring up the same dialog
box again, the box displays the last values that you entered. (This is similar
to having a command history.) If you want to use the same value, just press

TAB or ↓ to move to the next parameter.

� You can edit what you type (or values that remain from a previous entry)
in the same way that you can edit text on the command line. See Section
4.1 for more information on editing text on the command line.

When you’ve entered a value for the final parameter, point and click on OK to
save your changes, or on Cancel to discard your changes; the debugger
closes the dialog box and executes the command with the parameter values
you supplied. You can also choose between the OK and Cancel options by us-
ing the arrow keys and pressing on your desired choice.

Entering Commands From a Batch File

4-13Entering and Using Commands

4.4 Entering Commands From a Batch File

You can place debugger commands in a batch file and execute the file from
within the debugger environment. This is useful, for example, for setting up a
memory map that contains several MA commands followed by a MAP
command to enable memory mapping.

take Use the TAKE command to tell the debugger to read and execute commands
from a batch file. A batch file can call another batch file; they can be nested
in this manner up to 10 deep. To halt the debugger’s execution of a batch file,
press ESC .

The format for the TAKE command is:

take batch filename [, suppress echo flag]

� The batch filename parameter identifies the file that contains commands.

� If you supply path information with the filename, the debugger looks
for the file in the specified directory only.

� If you don’t supply path information with the filename, the debugger
looks for the file in the current directory.

� If the debugger can’t find the file in the current directory, it looks in any
directories that you identified with the D_DIR environment variable.
You can set D_DIR within the operating-system environment; the
command for doing this is:

setenv D_DIR ” pathname;pathname”

This allows you to name several directories that the debugger can
search.

� By default, the debugger echoes the commands in the display area of the
COMMAND window and updates the display as it reads commands from
the batch file.

� If you don’t use the suppress echo flag parameter, or if you use it but
supply a nonzero value, the debugger behaves in the default manner.

� If you want to suppress the echoing and updating, use the value 0 for
the suppress echo flag parameter.

Entering Commands From a Batch File

 4-14

Echoing strings in a batch file

When executing a batch file, you can display a string to the COMMAND win-
dow by using the ECHO command. The syntax for the command is:

echo string

This displays the string in the display area of the COMMAND window.

For example, you may want to document what is happening during the execu-
tion of a certain batch file. To do this, you could use the following line in your
batch file to indicate that you are creating a new memory map for your device:

echo Creating new memory map

(Notice that the string is not enclosed in quotes.)

When you execute the batch file, the following message appears:

.

.
Creating new memory map
.
.

Note that any leading blanks in your string are removed when the ECHO com-
mand is executed.

Controlling command execution in a batch file

In batch files, you can control the flow of debugger commands. You can
choose to execute debugger commands conditionally or set up a looping situa-
tion by using IF/ELSE/ENDIF or LOOP/ENDLOOP, respectively.

� To conditionally execute debugger commands in a batch file, use the
IF/ELSE/ENDIF commands. The syntax is:

if Boolean expression
debugger command
debugger command
.
.
[else
debugger command
debugger command
.
.]
endif

Entering Commands From a Batch File

4-15Entering and Using Commands

The debugger includes some predefined constants for use with IF. These
constants evaluate to 0 (false) or 1 (true). Table 4–1 shows the constants
and their corresponding tools.

Table 4–1. Predefined Constants for Use With Conditional Commands

Constant Debugger Tool

$$SIM$$ Simulator

If the Boolean expression evaluates to true (1), the debugger executes all
commands between the IF and ELSE or ENDIF. Note that the ELSE por-
tion of the command is optional. (See Chapter 12, Basic Information About
C Expressions, for more information.)

� To set up a looping situation to execute debugger commands in a batch
file, use the LOOP/ENDLOOP commands. The syntax is:

loop expression
debugger command
debugger command
.
.
endloop

These looping commands evaluate using the same method as the run
conditional command expression. (See Chapter 12, Basic Information
About C Expressions, for more information.)

� If you use an expression that is not Boolean, the debugger evaluates
the expression as a loop count. For example, if you wanted to execute
a sequence of debugger commands ten times, you would use the fol-
lowing:

loop 10
step
.
.
.
endloop

The debugger treats the 10 as a counter and executes the debugger
commands ten times.

Entering Commands From a Batch File

 4-16

� If you use a Boolean expression, the debugger executes the com-
mands repeatedly as long as the expression is true. This type of
expression uses one of the following operators as the highest prece-
dence operator in the expression:

> > = <
< = = = ! =
&& | | !

For example, if you want to trace some register values continuously,
you can set up a looping expression like the following:

loop !0
step
? PC
? A0
endloop

The IF/ELSE/ENDIF and LOOP/ENDLOOP commands work with the follow-
ing conditions:

� You can use conditional and looping commands only in a batch file.

� You must enter each debugger command on a separate line in the batch
file.

� You can’t nest conditional and looping commands within the same batch
file.

Defining Your Own Command Strings

4-17Entering and Using Commands

4.5 Defining Your Own Command Strings

The debugger provides a shorthand method of entering often-used com-
mands or command sequences. This processing is called aliasing. Aliasing
enables you to define an alias name for the command(s) and then enter the
alias name as if it were a debugger command.

To do this, use the ALIAS command. The syntax for this command is:

alias [alias name [, “command string”]]

The primary purpose of the ALIAS command is to associate the alias name
with the debugger command you’ve supplied as the command string. How-
ever, the ALIAS command is versatile and can be used in several ways:

� Aliasing several commands. The command string can contain more
than one debugger command—just separate the commands with semico-
lons. Be sure to enclose the command string in quotes.

For example, suppose you always began a debugging session by loading
the same object file, displaying the same C source file, and running to a
certain point in the code. You could define an alias to do all these tasks at
once:

alias init,”load test.out;file source.c;go main”

Now you could enter init instead of the three commands listed within the
quote marks.

� Supplying parameters to the command string. The command string
can define parameters that you’ll supply later. To do this, use a percent
sign and a number (%1) to represent the parameter. The numbers should
be consecutive (%1, %2, %3), unless you plan to reuse the same parame-
ter value for multiple commands.

For example, suppose that every time you filled an area of memory, you
also wanted to display that block in the MEMORY window:

alias mfil,”fill %1, %2, %3,;mem %1”

You could enter:

mfil 0x2ff80,0x18,0x1122

In this example, the first value (0x2ff80) is substituted for the first FILL pa-
rameter and the MEM parameter (%1). The second and third values are
substituted for the second and third FILL parameters (%2 and %3).

Defining Your Own Command Strings

 4-18

� Listing all aliases. To display a list of all the defined aliases, enter the
ALIAS command with no parameters. The debugger lists the aliases and
their definitions in the COMMAND window.

For example, assume that the init and mfil aliases have been defined as
shown on page 4-17. If you enter:

alias

you’ll see:

Alias Command
–––
INIT ––> load test.out;file source.c;go main
MFIL ––> fill %1,%2,%3;mem %1

� Finding the definition of an alias. If you know an alias name but are not
sure of its current definition, enter the ALIAS command with just an alias
name. The debugger displays the definition in the COMMAND window.

For example, if you have defined the init alias as shown on page 4-17, you
could enter:

alias init

Then you’d see:

”INIT” aliased as ”load test.out; file source.c;go main”

� Nesting alias definitions. You can include a defined alias name in the
command string of another alias definition. This is especially useful when
the command string is longer than the debugger command line.

� Redefining an alias. To redefine an alias, reenter the ALIAS command
with the same alias name and a new command string.

� Deleting aliases. To delete a single alias, use the UNALIAS command:

unalias alias name

To delete all aliases, enter the UNALIAS command with an asterisk
instead of an alias name:

unalias *

Note that the * symbol does not work as a wildcard.

Defining Your Own Command Strings

4-19Entering and Using Commands

Notes:

1) Alias definitions are lost when you exit the debugger. If you want to reuse
aliases, define them in a batch file.

2) Individual commands within a command string are limited to an expand-
ed length of 132 characters. The expanded length of the command
includes the length of any substituted parameter values.

 4-20

5-1Defining a Memory Map

Defining a Memory Map

Before you begin a debugging session, you must supply the debugger with a
memory map. The memory map tells the debugger which areas of memory it
can and can’t access. Note that the commands described in this chapter can
also be entered by using the Memory pulldown menu (see Section 4.2, Using
the Menu Bar and the Pulldown Menus, page 4-7).

Topic Page

5.1 The Memory Map: What It Is and Why You Must Define It 5-2.

5.2 A Sample Memory Map 5-4.

5.3 Identifying Usable Memory Ranges 5-5.

5.4 Enabling Memory Mapping 5-8.

5.5 Checking the Memory Map 5-9.

5.6 Modifying the Memory Map During a Debugging Session 5-10.

Chapter 5

The Memory Map: What It Is and Why You Must Define It

 5-2

5.1 The Memory Map: What It Is and Why You Must Define It

A memory map tells the debugger which areas of memory it can and can’t
access. Memory maps vary, depending on the application. Typically, the map
matches the MEMORY definition in your linker command file.

Note:

When the debugger compares memory accesses against the memory map,
it performs this checking in software, not hardware. The debugger can’t
prevent your program from attempting to access nonexistent memory.

A special default initialization batch file included with the debugger package
defines a memory map for your version of the debugger. This memory map
may be sufficient when you first begin using the debugger. However, the de-
bugger provides a complete set of memory-mapping commands that let you
modify the default memory map or define a new memory map.

You can define the memory map interactively by entering the memory-map-
ping commands while you’re using the debugger. This can be inconvenient be-
cause, in most cases, you’ll set up one memory map before you begin debug-
ging and will use this map for all of your debugging sessions. The easiest
method for defining a memory map is to put the memory-mapping commands
in a batch file.

Defining the memory map in a batch file

There are two methods for defining the memory map in a batch file:

� You can redefine the memory map defined in the initialization batch file.
� You can define the memory map in a separate batch file of your own.

When you invoke the debugger, it follows these steps to find the batch file that
defines your memory map:

1) It checks to see whether you’ve used the –t debugger option. The –t option
allows you to specify a batch file other than the initialization batch file
shipped with the debugger. If it finds the –t option, the debugger reads and
executes the specified file.

2) If you don’t use the –t option, the debugger looks for the default initializa-
tion batch file. The batch filename for the simulator is called siminit.cmd.
If the debugger finds the file, it reads and executes the file.

3) If the debugger does not find the –t option or the initialization batch file, it
looks for a file called init.cmd.

The Memory Map: What It Is and Why You Must Define It

5-3Defining a Memory Map

Potential memory map problems

You may experience these problems if the memory map isn’t correctly defined
and enabled:

� Accessing invalid memory addresses. If you don’t supply a batch file
containing memory-map commands, the debugger is initially unable to ac-
cess any target memory locations. Invalid memory addresses and their
contents are highlighted in the data-display windows. (On color monitors,
invalid memory locations, by default, are displayed in red.)

� Accessing an undefined or protected area. When memory mapping is
enabled, the debugger checks each of its memory accesses against the
memory map. If you attempt to access an undefined or protected area, the
debugger displays an error message.

� Loading a COFF file with sections that cross a memory range. Be sure
that the map ranges you specify in a COFF file match those that you define
with the MA command (described on page 5-5). Alternatively, you can
turn memory mapping off during a load by using the MAP OFF command
(described on page 5-8).

A Sample Memory Map

 5-4

5.2 A Sample Memory Map

Because you must define a memory map before you can run any programs,
it’s convenient to define the memory map in the initialization batch files.
Figure 5–1 (a) shows the memory map commands that are defined in the ini-
tialization batch file that accompanies the ’C6x simulator. You must edit the file
to your configuration. You can use the file as is, edit it, or create your own
memory map batch file to match your own configuration.

The MA (map add) commands define valid memory ranges and identify the
read/write characteristics of the memory ranges. By default, mapping is
enabled when you invoke the debugger. Figure 5–1 (b) illustrates the memory
map defined by the MA commands in Figure 5–1 (a).

Figure 5–1. Sample Memory Map for Use With a TMS320C6x Simulator

(a) Memory map commands (b) Memory map for ’C6x local memory

0x0000 0000
to 0x0002 FFFF

0x0003 0000
to 0x007F FFFF

Read/write memory

0x0080 0100
to 0x00BF FFFF

ma 0x000000, 0x30000, RAM
ma 0x800000, 0x100, RAM
ma 0xC00000, 0x10000, RAM

0x0080 0000
to 0x0080 00FF

ÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉ

Reserved

0x00C0 0000
to 0x00C0 FFFF

ÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉReserved

Read-only memory

Read/write memory

Identifying Usable Memory Ranges

5-5Defining a Memory Map

5.3 Identifying Usable Memory Ranges

ma The debugger’s MA (memory add) command identifies valid ranges of target
memory. The syntax for this command is:

ma address, length, type

� The address parameter defines the starting address of a range. This
parameter can be an absolute address, any C expression, the name of a
C function, or an assembly language label.

A new memory map must not overlap an existing entry. If you define a
range that overlaps an existing range, the debugger ignores the new
range and displays this error message in the display area of the
COMMAND window:

Conflicting map range

� The length parameter defines the length of the range. This parameter can
be any C expression.

� The type parameter identifies the read/write characteristics of the memory
range. The type must be one of these keywords:

To identify this kind of memory . . .
Use this keyword as the type
parameter . . .

Read-only R or ROM

Write-only W or WOM

Read/write R|W or RAM

No-access PROTECT

Input port INPORT or P|R

Output port OUTPORT or P|W

Input/output port IOPORT or P|R|W

Identifying Usable Memory Ranges

 5-6

Notes:

� The debugger caches memory that is not defined as a port type
(INPORT, OUTPORT, or IOPORT). For ranges that you don’t want
cached, be sure to map them as ports.

� Be sure that the map ranges that you specify in a COFF file match those
that you define with the MA command. Moreover, a command sequence
such as:

ma x,0,y,ram; ma x+y,0,z,ram

doesn’t equal

ma x,0,y+z,ram

If you plan to load a COFF block that spanned the length of y + z, use the
second MA command example. Alternatively, you could turn memory
mapping off during a load by using the MAP OFF command.

Memory mapping with the simulator

The ’C6x simulator has memory cache capabilities that allow you to allocate
as much memory as you need. However, to use memory cache capabilities
effectively with the ’C6x, do not allocate more than 20K words of memory in
your memory map. For example, the following memory map allocates 64K
words of ’C6x program memory.

Example 5–1. Sample Memory Map for the TMS320C6x Using Memory Cache
Capabilities

MA 0,0x5000,R|W
MA 0x5000,0x5000,R|W
MA 0xa000,0x5000,R|W
MA 0xf000,0x1000,R|W

The simulator creates temporary files in a separate directory on your disk. For
example, when you enter an MA command, the simulator creates a temporary
file in the root directory of your current disk. Therefore, if you are currently run-
ning your simulator on the C drive, temporary files are placed in the C:\ directo-
ry. This prevents the processor from running out of memory space while you
are executing the simulator.

All temporary files are deleted when you leave the simulator via the QUIT com-
mand. If, however, you exit the simulator with a soft reboot of your computer,
the temporary files are not deleted; you must delete these files manually. (Tem-
porary files usually have numbers for names.)

Identifying Usable Memory Ranges

5-7Defining a Memory Map

Your memory map is now restricted only by your PC’s capabilities. As a result,
there should be sufficient free space on your disk to run any memory map you
want to use. If you use the MA command to allocate 20K words (40K bytes)
of memory in your memory map, your disk should have at least 40K bytes of
free space available. To do this, enter:

ma 0x0, 0x5000, ram

Note:

You can also use the memory cache capability feature for the data memory.

Enabling Memory Mapping

 5-8

5.4 Enabling Memory Mapping

map By default, mapping is enabled when you invoke the debugger. In some
instances, you may want to explicitly enable or disable memory. You can use
the MAP command to do this; the syntax for this command is:

map on
or
map off

Note that disabling memory mapping can cause bus fault problems in the
target because the debugger may attempt to access nonexistent memory.

Note:

When memory mapping is enabled, you cannot:

� Access memory locations that are not defined by an MA command
� Modify memory areas that are defined as read only or protected

If you attempt to access memory in these situations, the debugger displays
this message in the display area of the COMMAND window:

Error in expression

Checking the Memory Map

5-9Defining a Memory Map

5.5 Checking the Memory Map

ml If you want to see which memory ranges are defined, use the ML (list memory
map) command. The syntax for this command is:

ml

The ML command lists the starting address, ending address, and read/write
characteristics of each defined memory range. Here is an example of the re-
sults shown in the display area of the COMMAND window when you enter the
ML command:

Memory range Attributes
00000000 – 0000ffff READ WRITE
00800000 – 008000ff READ WRITE
00c00000 – 00c0ffff READ WRITE

Ending addressStarting address

Modifying the Memory Map During a Debugging Session

 5-10

5.6 Modifying the Memory Map During a Debugging Session

If you need to modify the memory map during a debugging session, use these
commands.

md To delete a range of memory from the memory map, use the MD (memory
delete) command. The syntax for this command is:

md address

� The address parameter identifies the starting address of the range of
memory. If you supply an address that is not the starting address of a
range, the debugger displays this error message in the display area of the
COMMAND window:

Specified map not found

mr If you want to delete all defined memory ranges from the memory map, use
the MR (memory reset) command. The syntax for this command is:

mr

This resets the debugger memory map.

ma If you want to add a memory range to the memory map, use the MA (memory
add) command. The syntax for this command is:

ma address, length, type

The MA command is described in detail on page 5-5.

Returning to the original memory map

If you modify the memory map, you may want to go back to the original memory
map without quitting and reinvoking the debugger. You can do this by resetting
the memory map and then using the TAKE command to read in your original
memory map from a batch file.

Suppose, for example, that you set up your memory map in a batch file named
mem.map. You can enter these commands to go back to this map:

mr Reset the memory map
take mem.map Reread the default memory map

The MR command resets the memory map. (Note that you could put the MR
command in the batch file, preceding the commands that define the memory
map.) The TAKE command tells the debugger to execute commands from the
specified batch file.

6-1Loading, Displaying, and Running Code

Loading, Displaying, and
Running Code

The main purpose of a debugging system is to allow you to load and run your
programs in a test environment. This chapter tells you how to load your pro-
grams into the debugging environment, run them on the target system, and
view the associated source code. Many of the commands described in this
chapter can also be executed from the Load pulldown menu (see Section 4.2,
Using the Menu Bar and the Pulldown Menus, page 4-7).

Topic Page

6.1 Code-Display Windows: 6-2.
Viewing Assembly Language Code, C Code, or Both

6.2 Displaying Your Source Programs (or Other Text Files) 6-4.

6.3 Loading Object Code 6-8.

6.4 Where the Debugger Looks for Source Files 6-9.

a6.5 Running Your Programs 6-10.

6.6 Halting Program Execution 6-15.

Chapter 6

 6-2

6.1 Code-Display Windows:
Viewing Assembly Language Code, C Code, or Both

The debugger has three code-display windows:

� The DISASSEMBLY window displays the reverse assembly of program
memory contents.

� The FILE window displays any text file; its main purpose is to display C
source files.

� The CALLS window identifies the current function (when C code is run-
ning).

You can view code in several different ways. The debugger has three different
code displays that are associated with the three debugging modes. The
debugger’s selection of the appropriate display is based on two factors:

� The mode you select

� Whether your program is currently executing assembly language code or
C code

Here’s a summary of the modes and displays; for a complete description of the
three debugging modes, refer to Section 3.1, Debugging Modes and Default
Displays, on page 3-2.

Use this mode To view
The debugger uses these
code-display windows

assembly assembly language code only
(even if your program is execut-
ing C code)

DISASSEMBLY

auto assembly language code (when
that’s what your program is run-
ning)

DISASSEMBLY

auto C code only (when that’s what
your program is running)

� FILE
� CALLS

mixed both assembly language and C
code

� DISASSEMBLY
� FILE
� CALLS

minimal no code none

You can switch freely between the modes. If you choose auto mode, then the
debugger displays C code or assembly language code, depending on the type
of code that is currently executing.

Code-Display Windows: Viewing Assembly Language Code, C Code, or Both

6-3Loading, Displaying, and Running Code

Selecting a debugging mode

Unless you use the –min command-line option (which selects minimal mode
and is discussed on page 1-14), when you first invoke the debugger, it auto-
matically comes up in auto mode. You can then choose assembly or mixed
mode. There are several ways to do this.

The Mode pulldown menu provides an easy method for
switching modes. There are several ways to use the
pulldown menus; here’s one method:

1) Point to the menu name.

2) Press the left mouse button; do not release the button. Move the mouse
down the menu until your choice is highlighted.

3) Release the mouse button.

For more information about the pulldown menus, refer to Section 4.2, Using
the Menu Bar and the Pulldown Menus, on page 4-7.

F3 Pressing this key causes the debugger to switch modes in this order:

auto assembly mixed

Enter any of these commands to switch to the desired debugging mode:

c Changes from the current mode to auto mode

asm Changes from the current mode to assembly mode

mix Changes from the current mode to mixed mode

minimal Changes from the current mode to minimal mode

If the debugger is already in the desired mode when you enter a mode com-
mand, then the command has no effect.

Mode
C (auto)
Asm
Mixed
Mi Nimal

Code-Display Windows: Viewing Assembly Language Code, C Code, or Both

Displaying Your Source Programs (or Other Text Files)

 6-4

6.2 Displaying Your Source Programs (or Other Text Files)

The debugger displays two types of code:

� It displays assembly language code in the DISASSEMBLY window in auto,
assembly, or mixed mode.

� It displays C code in the FILE window in auto and mixed modes.

The DISASSEMBLY and FILE windows are primarily intended for displaying
code that the program counter (PC) points to. By default, the FILE window dis-
plays the C source for the current function (if any), and the DISASSEMBLY
window shows the current disassembly.

Sometimes it’s useful to display other files or different parts of the same file;
for example, you may want to set a breakpoint at an undisplayed line. The
DISASSEMBLY and FILE windows are not large enough to show the entire
contents of most assembly language and C files, but you can scroll through
the windows. You can also tell the debugger to display specific portions of the
disassembly or C source.

Displaying assembly language code

The assembly language code in the DISASSEMBLY window is the reverse
assembly of program-memory contents. (This code doesn’t come from any of
your text files or from the intermediate assembly files produced by the
compiler.)

MEMORY [PROG]
00007ce0 07d5142a

00007ce4 0780606a

00007ce8 0007fe2a

00007cec 0000006a

00007cf0 07bc01e2

00007cf4 07bf07a2

00007ce0 07d5142a c_int00 MVK,S2 0xfffaa28,B15

00007ce4 0780606a MVKH,S2 0xc00000,B15

00007ce8 0007fe2a MVK,S2 0x0ffc,B0

00007cec 0000006a MVKH,S2 0x0000,B0

00007cf0 07bc01e2 ADD,S2 B0,B15,B15

00007cf4 07bf07a2 AND,S2 0xfffffff8,B15,B15

DISASSEMBLY

Addresses Contents of memory
(object code)

Disassembly of object
code in memory

Displaying Your Source Programs (or Other Text Files)

6-5Loading, Displaying, and Running Code

When you invoke the debugger, it comes up in auto mode. If you load an object
file when you invoke the debugger, the DISASSEMBLY window displays the
reverse assembly of the object file that’s loaded into memory. If you don’t load
an object file, the DISASSEMBLY window shows the reverse assembly of
whatever is in memory.

In assembly and mixed modes, you can use these commands to display a
different portion of code in the DISASSEMBLY window.

dasm Use the DASM command to display code beginning at a specific point. The
syntax for this command is:

dasm address
or
dasm function name

This command modifies the display so that address or function name is
displayed within the DISASSEMBLY window. The debugger continues to dis-
play this portion of the code until you run a program and halt it.

addr Use the ADDR command to display assembly language code beginning at a
specific point. The syntax for this command is:

addr address
or
addr function name

In assembly mode, ADDR works like the DASM command, positioning the
code starting at address or at function name as the first line of code in the
DISASSEMBLY window. In mixed mode, ADDR affects both the
DISASSEMBLY and FILE windows.

Displaying Your Source Programs (or Other Text Files)

 6-6

Displaying C code

Unlike assembly language code, C code isn’t reconstructed from memory
contents—the C code that you view is your original C source. You can display
C code explicitly or implicitly:

� You can force the debugger to show C source by entering a FILE, FUNC,
or ADDR command.

� In auto and mixed modes, the debugger automatically opens a FILE
window if you’re currently running C code.

These commands are valid in C and mixed modes:

file Use the FILE command to display the contents of any text file. The syntax for
this command is:

file filename

This uses the FILE window to display the contents of filename. The debugger
continues to display this file until you run a program and halt in a C function.
Although this command is most useful for viewing C code, you can use the
FILE command for displaying any text file. You can view only one text file at
a time. Note that you can also access this command from the Load pulldown
menu.

(Displaying a file doesn’t load that file’s object code. If you want to be able to
run the program, you must load the file’s associated object code as described
in Section 6.3, Loading Object Code.)

func Use the FUNC command to display a specific C function. The syntax for this
command is:

func function name
or
func address

FUNC modifies the display so that function name or address is displayed
within the window. If you supply an address instead of a function name, the
FILE window displays the function containing address and places the cursor
at that line.

Note that FUNC works similarly to FILE, but you don’t need to identify the name
of the file that contains the function.

Displaying Your Source Programs (or Other Text Files)

6-7Loading, Displaying, and Running Code

addr Use the ADDR command to display C or assembly code beginning at a specific
point. The syntax for this command is:

addr address
or
addr function name

In a C display, ADDR works like the FUNC command, positioning the code
starting at address or at function name as the first line of code in the FILE
window. In mixed mode, ADDR affects both the FILE and DISASSEMBLY
windows.

Whenever the CALLS window is open, you can use the mouse or function keys
to display a specific C function. This is similar to the FUNC or ADDR command
but applies only to the functions listed in the CALLS window.

1) In the CALLS window, point to the name of the C function.

2) Click the left mouse button.

(If the CALLS window is active, you can also use the arrow keys and F9 to
display the function; see the CALLS window discussion on page 3-10 for
details.)

Displaying other text files

The DISASSEMBLY window always displays the reverse assembly of memory
contents, no matter what’s in memory.

The FILE window is primarily for displaying C code, but you can use the FILE
command to display any text file within the FILE window. You may, for example,
wish to examine system files such as autoexec.bat or an initialization batch file.
You can also view your original assembly language source files in the FILE
window.

You are restricted to displaying files that are 65 518 bytes long or less.

Loading Object Code

 6-8

6.3 Loading Object Code
In order to debug a program, you must load the program’s object code into
memory. You can do this as you’re invoking the debugger, or you can do it after
you’ve invoked the debugger. (Note that you create an object file by compiling,
assembling, and linking your source files; see Section 1.4, Preparing Your
Program for Debugging, on page 1-10.)

Loading code while invoking the debugger

You can load an object file when you invoke the debugger (this has the same
effect as using the debugger’s LOAD command). To do this, enter the appro-
priate debugger-invocation command along with the name of the object file.

If you want to load a file’s symbol table only, use the –s option (this has the
same effect as using the debugger’s SLOAD command). To do this, enter the
appropriate debugger-invocation command along with the name of the object
file and specify –s (see page 1-14 for more information).

Loading code after invoking the debugger

After you invoke the debugger, you can use one of three commands to load
object code and/or the symbol table associated with an object file. Use these
commands as described below, or use them from the Load pulldown menu.

load Use the LOAD command to load both an object file and its associated symbol
table. In effect, the LOAD command performs both a RELOAD and an SLOAD.
The format for this command is:

load object filename

If you don’t supply an extension, the debugger looks for filename.out.

reload Use the RELOAD command to load only an object file without loading its asso-
ciated symbol table. This is useful for reloading a program when memory has
been corrupted. The format for this command is:

reload [object filename]

If you enter the RELOAD command without specifying a filename, the debug-
ger reloads the file that you loaded last.

sload Use the SLOAD command to load only a symbol table. The format for this com-
mand is:

sload object filename

SLOAD is useful in a debugging environment in which the debugger cannot,
or need not, load the object code (for example, if the code is in ROM). SLOAD
clears the existing symbol table before loading the new one but does not
modify memory or set the program entry point.

Where the Debugger Looks for Source Files

6-9Loading, Displaying, and Running Code

6.4 Where the Debugger Looks for Source Files

Some commands (FILE, LOAD, RELOAD, and SLOAD) expect a filename as
a parameter. If the filename includes path information, the debugger uses the
file from the specified directory and doesn’t search for the file in any other
directory. If you don’t supply path information, the debugger must search for
the file. The debugger first looks for these files in the current directory. You
may, however, have your files in several different directories.

� If you’re using LOAD, RELOAD, or SLOAD, you can specify the path as
part of the filename.

� If you’re using the FILE command, you have several options:

� Within the operating-system environment, you can name additional
directories with the D_SRC environment variable. The format for
doing this is:

setenv D_SRC ” pathname;pathname”

This allows you to name several directories that the debugger can
search.

� When you invoke the debugger, you can use the – i option to name
additional source directories for the debugger to search. The format
for this option is –i pathname.

You can specify multiple pathnames by using several –i options (one
pathname per option). The list of source directories that you create
with –i options is valid until you quit the debugger.

use � Within the debugger environment, you can use the USE command to
name additional source directories. The format for this command is:

use directory name

You can specify only one directory at a time.

In all cases, you can use relative pathnames such as ../csource or ../../code.
The debugger can recognize a cumulative total of 20 paths specified with
D_SRC, –i, and USE.

Running Your Programs

 6-10

6.5 Running Your Programs

To debug your programs, you must execute them on a ’C6x debugging tool (the
simulator). The debugger provides two basic types of commands to help you
run your code:

� Basic run commands run your code without updating the display until you
explicitly halt execution. There are several ways to halt execution:

� Set a breakpoint.
� When you issue a run command, define a specific ending point.
� Press ESC .
� Press the left mouse button.

� Single-step commands execute assembly language or C code, one state-
ment at a time, and update the display after each execution.

Defining the starting point for program execution

All run and single-step commands begin executing from the current PC. When
you load an object file, the PC is automatically set to the starting point for pro-
gram execution. You can easily identify the current PC by:

� Finding its entry in the CPU window

� Finding the appropriately highlighted line in the FILE or DISASSEMBLY
window. To do this, execute one of these commands:

dasm PC
or
addr PC

Sometimes you may want to modify the PC to point to a different position in
your program. There are two ways to do this:

rest � If you executed some code and would like to rerun the program from the
original program entry point, use the RESTART (REST) command. The
format for this command is:

restart
or
rest

Note that you can also access this command from the Load pulldown
menu.

Running Your Programs

6-11Loading, Displaying, and Running Code

?/eval � You can directly modify the PC’s contents with one of these commands:

?PC = new value
or
eval pc = new value

After halting execution, you can continue from the current PC by reissuing any
of the run or single-step commands.

Running code

The debugger supports several run commands.

run The RUN command is the basic command for running an entire program. The
format for this command is:

run [expression]

The command’s behavior depends on the type of parameter you supply:

� If you don’t supply an expression, the program executes until it encounters
a breakpoint or until you press ESC or the left mouse button.

� If you supply a logical or relational expression, this becomes a conditional
run (see page 6-14).

� If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger executes count instructions,
halts, then updates the display.

go Use the GO command to execute code up to a specific point in your program.
The format for this command is:

go [address]

If you don’t supply an address parameter, GO acts like a RUN command with-
out an expression parameter.

ret The RETURN (RET) command executes the code in the current C function
and halts when execution returns to its caller. The format for this command is:

return
or
ret

Breakpoints do not affect this command, but you can halt execution by press-
ing ESC or the left mouse button.

F5 Pressing this key runs code from the current PC. This is similar to entering a
RUN command without an expression parameter.

Running Your Programs

 6-12

Single-stepping through code

Single-step execution is similar to running a program that has a breakpoint set
on each line. The debugger executes one statement, updates the display, and
halts execution. (You can supply a parameter that tells the debugger to
single-step more than one statement; the debugger updates the display after
each statement.) You can single-step through assembly language code or C
code.

The debugger supports several commands for single-stepping through a pro-
gram. Command execution may vary, depending on whether you’re single-
stepping through C code or assembly language code.

Note that the debugger ignores interrupts when you use the STEP command
to single-step through assembly language code.

Each of the single-step commands has an optional expression parameter that
works like this:

� If you don’t supply an expression, the program executes a single state-
ment, then halts.

� If you supply a logical or relational expression, this becomes a conditional
single-step execution (see page 6-14).

� If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger single-steps count C or
assembly language statements (depending on the type of code you’re in).

step Use the STEP command to single-step through assembly language or C code.
The format for this command is:

step [expression]

If you’re in C code, the debugger executes one C statement at a time. In
assembly or mixed mode, the debugger executes one assembly language
statement at a time.

If you’re single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s –g debug
option). When function execution completes, single-step execution returns to
the caller. If the function wasn’t compiled with the debug option, the debugger
executes the function but doesn’t show single-step execution of the function.

For more information about the compiler’s –g option, see the TMS320C6x Op-
timizing C Compiler User’s Guide.

Running Your Programs

6-13Loading, Displaying, and Running Code

cstep The CSTEP command is similar to STEP, but CSTEP always single-steps in
terms of a C statement. If you’re in C code, STEP and CSTEP behave
identically. In assembly language code, however, CSTEP executes all assem-
bly language statements associated with one C statement before updating the
display. The format for this command is:

cstep [expression]

next
cnext

The NEXT and CNEXT commands are similar to the STEP and CSTEP com-
mands. The only difference is that NEXT/CNEXT never show single-step
execution of called functions—they always step to the next consecutive state-
ment. The formats for these commands are:

next [expression]
cnext [expression]

You can also single-step through programs by using function keys:

F8 Acts as a STEP command.

F10 Acts as a NEXT command.

When you use the function keys to single-step through programs, you can’t en-
ter an expression for the command.

The debugger allows you to execute several single-step commands from the
selections on the menu bar.

To execute a STEP:

1) Point to Step=F8 in the menu bar.

2) Press and release the left mouse button.

To execute a NEXT:

1) Point to Next=F10 in the menu bar.

2) Press and release the left mouse button.

When you use the menu-bar selections to single-step through programs, you
can’t enter an expression for the command.

Running Your Programs

 6-14

Running code while disconnected from the target system

reset The RESET command resets the simulator and reloads the monitor. This is a
software reset. The format for this command is:

reset

If you execute the RESET command, the simulator simulates the ’C6x proces-
sor and peripheral reset operation, putting the processor in a known state.

Running code conditionally

The RUN, STEP, CSTEP, NEXT, and CNEXT commands all have an optional
expression parameter that can be a relational or logical expression. This type
of expression uses one of the following operators as the highest precedence
operator in the expression:

> > = <
< = = = ! =
&& | | !

When you use this type of expression with these commands, the command
becomes a conditional run. The debugger executes the command repeatedly
for as long as the expression evaluates to true.

You must use software breakpoints with conditional runs; the expression is
evaluated each time the debugger encounters a breakpoint. (Breakpoints are
described in Chapter 8, Using Software Breakpoints.) Each time the debugger
evaluates the conditional expression, it updates the screen. The debugger
applies this algorithm:

top:
if (expression = = 0) go to end;
run or single-step (until breakpoint, ESC , or mouse button halts execution)
if (halted by breakpoint, not by ESC or mouse button) go to top

end:

Generally, you should set the breakpoints on statements that are related in
some way to the expression. For example, if you’re watching a particular
variable in a WATCH window, you may want to set breakpoints on statements
that affect that variable and to use that variable in the expression.

Halting Program Execution

6-15Loading, Displaying, and Running Code

6.6 Halting Program Execution

Whenever you’re running or single-stepping code, program execution halts
automatically if the debugger encounters a breakpoint or if it reaches a
particular point where you told it to stop (by supplying a count or an address).
If you’d like to explicitly halt program execution, there are two ways to accom-
plish this:

Click the left mouse button.

ESC Press the escape key.

After halting execution, you can continue program execution from the current
PC by reissuing any of the run or single-step commands.

 6-16

7-1Managing Data

Managing Data

 The debugger allows you to examine and modify many different types of data
related to the ’C6x and to your program. You can display and modify the values
of:

� Individual memory locations or a range of memory

� ’C6x registers

� Variables, including scalar types (ints, chars, etc.) and aggregate types
(arrays, structures, etc.)

Topic Page

7.1 Where Data Is Displayed 7-2.

7.2 Basic Commands for Managing Data 7-2.

7.3 Basic Methods for Changing Data Values 7-4.

7.4 Managing Data in Memory 7-6.

7.5 Managing Register Data 7-10.

7.6 Managing Data in a DISP (Display) Window 7-11.

7.7 Managing Data in a WATCH Window 7-14.

7.8 Displaying Data in Alternative Formats 7-17.

Chapter 7

Where Data Is Displayed

 7-2

7.1 Where Data Is Displayed
Four windows are dedicated to displaying the various types of data.

Type of data Window name and purpose

Memory locations MEMORY window
Displays the contents of a range of data
memory, program memory, or I/O space

Register values CPU window
Displays the contents of ’C6x registers

Pointer data or selected variables of
an aggregate type

DISP window
Displays the contents of aggregate types
and shows the values of individual mem-
bers

Selected variables (scalar types or in-
dividual members of aggregate types)
and specific memory locations or reg-
isters

WATCH window
Displays selected data

This group of windows is referred to as data-display windows.

7.2 Basic Commands for Managing Data
The debugger provides special-purpose commands for displaying and modify-
ing data in dedicated windows. The debugger also supports several general-
purpose commands that you can use to display or modify any type of data.

whatis If you want to know the type of a variable, use the WHATIS command. The
syntax for this command is:

whatis symbol

This lists symbol’s data type in the display area of the COMMAND window. The
symbol can be any variable (local, global, or static), a function name, structure
tag, typedef name, or enumeration constant.

Command Result displayed in the COMMAND window

whatis aai int aai[10][5];

whatis xxx struct xxx {
int a;
int b;
int c;
int f1 : 2;
int f2 : 4;
struct xxx *f3;
int f4[10];

}

Where Data Is Displayed / Basic Commands for Managing Data

Basic Commands for Managing Data

7-3Managing Data

? The ? (evaluate expression) command evaluates an expression and shows
the result in the display area of the COMMAND window. The syntax for this
command is:

? expression

The expression can be any C expression, including an expression with side
effects. However, you cannot use a string constant or function call in the
expression.

If the result of expression is scalar, the debugger displays the result as a deci-
mal value in the COMMAND window. If expression is a structure or array, ? dis-
plays the entire contents of the structure or array; you can halt long listings by
pressing ESC .

Here are some examples that use the ? command.

Command Result displayed in the COMMAND window

? aai aai[0][0] 1
aai[0][1] 23
aai[0][2] 45
etc.

? j 4194425

? j=0x5a 90

Note that the DISP command (described in detail on page 7-11) behaves like
the ? command when its expression parameter does not identify an aggregate
type.

eval The EVAL (evaluate expression) command behaves like the ? command but
does not show the result in the display area of the COMMAND window. The
syntax for this command is:

eval expression
or
e expression

EVAL is useful for assigning values to registers or memory locations in a batch
file where it’s not necessary to display the result.

Basic Methods for Changing Data Values

 7-4

7.3 Basic Methods for Changing Data Values

The debugger provides you with a great deal of flexibility in modifying various
types of data. You can use the debugger’s overwrite editing capability, which
allows you to change a value simply by typing over its displayed value. You can
also use the data-management commands for more complex editing.

Editing data displayed in a window

Use overwrite editing to modify data in a data-display window; you can edit:

� Registers displayed in the CPU window
� Memory contents displayed in a MEMORY window
� Elements displayed in a DISP window
� Values displayed in the WATCH window

There are two similar methods for overwriting displayed data:

This method is sometimes referred to as the “click and type” method.

1) Point to the data item that you want to modify.

2) Click the left button. The debugger highlights the selected field. (Note that
the window containing this field becomes active when you press the
mouse button.)

ESC 3) Type the new information. If you make a mistake or change your mind,
press ESC or move the mouse outside the field and press/release the left
button; this resets the field to its original value.

4) When you finish typing the new information, press or any arrow key.
This replaces the original value with the new value.

1) Select the window that contains the field you’d like to modify; make this the
active window. (Use the mouse, the WIN command, or F6 . For more
detail, see Section 3.4, The Active Window, on page 3-21.)

2) Use arrow keys to move the cursor to the field you’d like to edit.

↑ Moves up 1 field at a time.
↓ Moves down 1 field at a time.
← Moves left 1 field at a time.
→ Moves right 1 field at a time.

F9 3) When the field you’d like to edit is highlighted, press F9 . The debugger
highlights the field that the cursor is pointing to.

Basic Methods for Changing Data Values

7-5Managing Data

ESC 4) Type the new information. If you make a mistake or change your mind,
press ESC ; this resets the field to its original value.

5) When you finish typing the new information, press or any arrow key.
This replaces the original value with the new value.

Note:

If you press when the cursor is in the middle of text, the debugger truncates
the input text at the point where you press . Likewise, if you use ← or →

to move to the beginning of the previous or next field, the debugger truncates
the input text at the point where you press the ← or → .

Advanced “editing”—using expressions with side effects

Using the overwrite editing feature to modify data is straightforward. However,
data-management methods take advantage of the fact that C expressions are
accepted as parameters by most debugger commands and that C expressions
can have side effects. When an expression has a side effect, it means that the
value of some variable in the expression changes as the result of evaluating
the expression.

This means that you can coerce many commands into changing values for
you. Specifically, it’s most helpful to use ? and EVAL to change data as well
as display it.

For example, if you want to see what’s in auxiliary register A3, you can enter:

? A3

You can also use this type of command to modify A3’s contents. Here are some
examples of how you might do this:

? A3++ Side effect: increments the contents of A3 by 1
eval ––A3 Side effect: decrements the contents of A3 by 1
? A3 = 8 Side effect: sets A3 to 8
eval A3/=2 Side effect: divides contents of A3 by 2

Note that not all expressions have side effects. For example, if you enter
? A3+4 , the debugger displays the result of adding 4 to the contents of A3 but
does not modify A3’s contents. Expressions that have side effects must con-
tain an assignment operator or an operator that implies an assignment. Opera-
tors that can cause a side effect are:

= += –= *= /=

%= &= ^= |= <<=

>>= ++ – –

Managing Data in Memory

 7-6

7.4 Managing Data in Memory

In mixed and assembly modes, the debugger maintains a MEMORY window
that displays the contents of memory. For details concerning the MEMORY
window, see MEMORY windows on page 3-13.

MEMORY

Addresses Data

00000100 06be14f6 063de2f6 05bdc2f6

0000010c 053da2f6 06bd82f4 063d62f4

00000118 05bd42f5 00000000 05080059

00000124 053d22f4 000f8411 05a80064

00000130 01280064 00000001 00000000

0000013c 00000000 0000ae29 003d02f5

The debugger has commands that show the memory values at a specific
location or that display a different range of memory in the MEMORY window.
The debugger allows you to change the values at individual locations; for more
information, refer to Section 7.3, Basic Methods for Changing Data Values.

Displaying memory contents

The main way to observe memory contents is to view the display in a
MEMORY window. The debugger displays the default MEMORY windows au-
tomatically (labeled MEMORY). You can open any number of additional
MEMORY windows to display different memory ranges.

The amount of memory that you can display in a MEMORY window is limited
by the size of the window (which is limited only by the screen size).

mem You can use the MEM command to open an additional MEMORY window or
to display a different memory range in a window. The syntax for this command
is:

mem expression [, [display format] [, window name]]

� The expression represents the address of the first entry in the MEMORY
window. The end of the range is defined by the size of the window: to show
more memory locations, make the window larger; to show fewer locations,
make the window smaller. For more information, see Resizing a window
on page 3-24.

Managing Data in Memory

7-7Managing Data

Expression can be an absolute address, a symbolic address, or any C
expression. Here are several examples:

� Absolute address. Suppose that you want to display data memory
beginning from the very first address. You might enter this command:

mem 0x00

Hint: MEMORY window addresses are shown in hexadecimal format.
If you want to specify a hex address, be sure to prefix the address
number with 0x; otherwise, the debugger treats the number as a deci-
mal address.

� Symbolic address. You can use any defined C symbol as an expres-
sion parameter. For example, if your program defined a symbol
named SYM, you could enter this command:

mem &SYM

Hint: Prefix the symbol with the & operator to use the address of the
symbol.

� C expression . If you use a C expression as a parameter, the debug-
ger evaluates the expression and uses the result as a memory ad-
dress:

mem SP – A0 + label

� The display format parameter is optional. When used, the data is dis-
played in the selected format as shown in Table 7–1 on page 7-17.

� The window name parameter is optional if you are displaying a different
memory range in the default MEMORY window. Use the window name pa-
rameter when you want to open an additional MEMORY window or
change the displayed memory range in an additional MEMORY window.
When you open an additional MEMORY window, the debugger appends
the window name to the MEMORY window label.

You can also change the display of any data-display window—including the
MEMORY window—by scrolling through the window’s contents. For more
details, see Scrolling through a window’s contents on page 3-29.

Managing Data in Memory

 7-8

Displaying memory contents while you’re debugging C

If you’re debugging C code in auto mode, you won’t see a MEMORY window—
the debugger doesn’t show the MEMORY window in the C-only display.
However, there are several ways to display memory in this situation.

Hint: If you want to use the contents of an address as a parameter, be sure
to prefix the address with the C indirection operator (*).

� If you have only a temporary interest in the contents of a specific memory
location, you can use the ? command to display the value at this address.
For example, if you want to know the contents of data memory location 26
(hex), you could enter:

? *0x26

The debugger displays the memory value in the display area of the
COMMAND window.

� If you want the opportunity to observe a specific memory location over a
longer period of time, you can display it in a WATCH window. Use the WA
command to do this:

wa *0x26

� You can also use the DISP command to display memory contents. The
DISP window shows memory in an array format with the specified address
as “member” [0]. In this situation, you can also use casting to display
memory contents in a different numeric format:

disp *(float *)0x26

Managing Data in Memory

7-9Managing Data

Saving memory values to a file

ms Sometimes it’s useful to save a block of memory values to a file. You can use
the MS (memory save) command to do this; the files are saved in COFF for-
mat. The syntax for the MS command is:

ms address, length, filename

� The address parameter identifies the first address in the block.

� The length parameter defines the length, in words, of the block. This
parameter can be any C expression.

� The filename is a system file. If you don’t supply an extension, the debug-
ger adds an .obj extension.

For example, to save the values in data memory locations 0x0000 – 0x0010
to a file named memsave, you could enter:

ms 0x0,0x10,memsave

To reload memory values that were saved in a file, use the LOAD command.
For example, to reload the values that were stored in memsave, enter:

load memsave.obj

Filling a block of memory

fill Sometimes it’s useful to be able to fill an entire block of memory at once. You
can do this by using the FILL command. The syntax for this command is:

fill address, length, data

� The address parameter identifies the first address in the block.
� The length parameter defines the number of words to fill.
� The data parameter is the value that is placed in each word in the block.

For example, to fill memory locations 0x10FF–0x110D with the value
0xABCD, you would enter:

fill 0x10ff,0xf,0xabcd

If you want to check whether memory has been filled correctly, you can enter:

mem 0x10ff

This changes the MEMORY window display to show the block of memory
beginning at memory address 0x10FF.

Note that the FILL command can also be executed from the Memory pulldown
menu.

Managing Register Data

 7-10

7.5 Managing Register Data

In mixed and assembly modes, the debugger maintains a CPU window that
displays the contents of individual registers. For details, see CPU window on
page 3-16.

CPU

A0 00006ce8 B0 00000000 A1 00000000

B1 00000000 A2 00000100 B2 00000000

A3 ffffffdd B3 00000001 A4 00000002

B4 00000100 A5 00000001 B5 00000000

A6 00007754 B6 00000000 A7 00000000.

Register
name

Register
contents

The debugger provides commands that allow you to display and modify the
contents of specific registers. You can use the data-management commands
or the debugger’s overwrite editing capability to modify the contents of any reg-
ister displayed in the CPU or WATCH window. For more information, refer to
Section 7.3, Basic Methods for Changing Data Values.

Displaying register contents

The main way to observe register contents is to view the display in the CPU
window. However, you may not be interested in all of the registers; if you’re in-
terested in only a few registers, you might want to make the CPU window small
and use the extra screen space for the DISASSEMBLY or FILE display. In this
type of situation, there are several ways to observe the contents of the selected
registers.

� If you have only a temporary interest in the contents of a register, you can
use the ? command to display the register’s contents. For example, if you
want to know the contents of A0, you could enter:

? A0

The debugger displays A0’s current contents in the display area of the
COMMAND window.

� If you want to observe a register over a longer period of time, you can use
the WA command to display the register in a WATCH window. For
example, if you want to observe the status register, you could enter:

wa ST0,Status Register 0

This adds the ST0 to the WATCH window and labels it as Status Register
0. The register’s contents are continuously updated, just as if you were ob-
serving the register in the CPU window.

When you’re debugging C in auto mode, these methods are also useful be-
cause the debugger doesn’t show the CPU window in the C-only display.

Managing Data in a DISP (Display) Window

7-11Managing Data

7.6 Managing Data in a DISP (Display) Window

The main purpose of the DISP window is to display members of complex,
aggregate data types such as arrays and structures. The debugger shows
DISP windows only when you specifically request to see DISP windows with
the DISP command (described below). Note that you can have up to 120 DISP
windows open at once. For more details, see DISP windows on page 3-17.

DISP: str

a 84

b 86

c 172

f1 1

f2 7

f3 0x18740001

f4 [...]

Structure
members

Member
values

This member is an array, and you
can display its contents in a sec-

ond DISP window

DISP: str.f4

[0] 44276127

[1] 1778712578

[2] 555492660

[3] 356713217

[4] 138412802

[5] 182452229

[6] 35659888

[7] 37749506

[8] 134742016

[9] 138412801

Remember, you can use the data-management commands or the debugger’s
overwrite editing capability to modify the contents of any value displayed in a
DISP window. For more information, refer to Section 7.3, Basic Methods for
Changing Data Values.

Displaying data in a DISP window

disp To open a DISP window, use the DISP command. Its basic syntax is:

disp expression

If the expression is not an array, structure, or pointer (of the form *pointer
name), the DISP command behaves like the ? command. However, if expres-
sion is one of these types, the debugger opens a DISP window to display the
values of the members.

If a DISP window contains a long list of members, you can use PAGE DOWN ,
PAGE UP , or arrow keys to scroll through the window. If the window contains an

array of structures, you can use CONTROL PAGE DOWN and CONTROL PAGE UP to
scroll through the array.

Managing Data in a DISP (Display) Window

 7-12

Once you open a DISP window, you may find that a displayed member is
another one of these types. This is how you identify the members that are
arrays, structures, or pointers:

A member that is an array looks like this [. . .]
A member that is a structure looks like this {. . .}
A member that is a pointer looks like an address 0x0000

You can display the additional data (the data pointed to or the members of the
array or structure) in additional DISP windows (these are referred to as
children). There are three ways to do this.

Use the DISP command again; this time, expression must identify the member
that has additional data. For example, if the first expression identifies a struc-
ture named str and one of str’s members is an array named f4, you can display
the contents of the array by entering this command:

disp str.f4

This opens a new DISP window that shows the contents of the array. If str has
a member named f3 that is a pointer, you could enter:

disp *str.f3

This opens a window to display what str.f3 points to.

Here’s another method of displaying the additional data:

1) Point to the member in the DISP window.

2) Now click the left button.

Here’s the third method:

↑ ↓ 1) Use the arrow keys to move the cursor up and down in the list of members.

F9 2) When the cursor is on the desired field, press F9 .

When the debugger opens a second DISP window, the new window may at
first be displayed on top of the original DISP window; if so, you can move the
windows so that you can see both at once. If the new windows also have
members that are pointers or aggregate types, you can continue to open new
DISP windows.

Managing Data in a DISP (Display) Window

7-13Managing Data

Closing a DISP window

Closing a DISP window is a simple, two-step process.

1) Make the DISP window that you want to close active (see Section 3.4, The
Active Window, on page 3-21).

2) Press F4 .

Note that you can close a window and all of its children by closing the original
window.

Note:

The debugger automatically closes any DISP windows when you execute a
LOAD or SLOAD command.

Managing Data in a WATCH Window

 7-14

7.7 Managing Data in a WATCH Window

The debugger doesn’t maintain a dedicated window that tells you about the
status of all the symbols defined in your program. Such a window might be so
large that it wouldn’t be useful. Instead, the debugger allows you to create a
WATCH window that shows you how program execution affects specific
expressions, variables, registers, or memory locations.

WATCH

1: A0 0x00001802

2: X+X 4

3: PC 0x000079c0

Watch index

Label Current value

The debugger displays a WATCH window only when you specifically request
a WATCH window with the WA command (described below). For additional
details concerning the WATCH window, see WATCH windows on page 3-18.

Remember, you can use the data-management commands or the debugger’s
overwrite editing capability to modify the contents of any value displayed in the
WATCH window. For more information, refer to Section 7.3, Basic Methods for
Changing Data Values.

Note:

All of the watch commands described can also be accessed
from the Watch pulldown menu. For more information about
using the the pulldown menus, refer to Section 4.2, Using the
Menu Bar and the Pulldown Menus, on page 4-7.

Watch
Add
Delete
Reset

Managing Data in a WATCH Window

7-15Managing Data

Displaying data in the WATCH window

The debugger has one command for adding items to a WATCH window.

wa To open a WATCH window, use the WA (watch add) command. The syntax is:

wa expression [,[label] [, [display format] [, window name]]]

When you first execute WA, the debugger opens a WATCH window. After that,
executing WA adds additional values to the WATCH window, unless you open
an additional watch window.

� The expression parameter can be any C expression, including an expres-
sion that has side effects. It’s most useful to watch an expression whose
value will change over time; constant expressions provide no useful func-
tion in the WATCH window.

If you want to use the contents of an address as a parameter, be sure to
prefix the address with the C indirection operator (*). Use the WA com-
mand to do this:

wa *0x26

� The label parameter is optional. When used, it provides a label for the
watched entry. If you don’t use a label, the debugger displays the expres-
sion in the label field.

� The display format parameter is optional. When used, the data is dis-
played in the selected format as shown in Table 7–1 on page 7-17.

� The window name parameter is optional. If you omit the window name pa-
rameter, the debugger displays the expression in the default WATCH win-
dow (labeled WATCH). You can open additional WATCH windows by us-
ing the window name parameter. When you open an additional WATCH
window, the debugger appends the window name to the WATCH window
label. You can create as many WATCH windows as you need.

Managing Data in a WATCH Window

 7-16

Deleting watched values and closing the WATCH window

The debugger supports two commands for deleting items from the WATCH
window.

wr If you’d like to close a WATCH window and delete all of the items in that window
in a single step, use the WR (watch reset) command. The syntax is:

wr [{* | window name}]

The optional window name parameter deletes a particular WATCH window;
* deletes all WATCH windows.

wd If you’d like to delete a specific item from a WATCH window, use the WD (watch
delete) command. The syntax is:

wd index number [, window name]

Whenever you add an item to a WATCH window, the debugger assigns it an
index number. (The illustration of the WATCH window on page 7-14 points to
these watch indexes.) The WD command’s index number parameter must cor-
respond to one of the watch indexes in the named WATCH window.

Note that deleting an item (depending on where it is in the list) causes the
remaining index numbers to be reassigned. Deleting the last remaining item
in a WATCH window closes that WATCH window.

Note:

The debugger automatically closes any WATCH windows when you execute
a LOAD or SLOAD command.

Displaying Data in Alternative Formats

7-17Managing Data

7.8 Displaying Data in Alternative Formats

By default, all data is displayed in its natural format. This means that:

� Integer values are displayed as decimal numbers.
� Floating-point values are displayed in floating-point format.
� Pointers are displayed as hexadecimal addresses (with a 0x prefix).
� Enumerated types are displayed symbolically.

However, any data displayed in the COMMAND, MEMORY, WATCH, or DISP
window can be displayed in a variety of formats.

Changing the default format for specific data types

To display specific types of data in a different format, use the SETF command.
The syntax for this command is:

setf [data type, display format]

The display format parameter identifies the new display format for any data of
type data type. Table 7–1 lists the available formats and the corresponding
characters that can be used as the display format parameter.

Table 7–1. Display Formats for Debugger Data

Display Format Parameter Display Format Parameter

Default for the data type * Octal o

ASCII character (bytes) c Valid address p

Decimal d ASCII string s

Exponential floating point e Unsigned decimal u

Decimal floating point f Hexadecimal x

Table 7–2 lists the C data types that can be used for the data type parameter.
Only a subset of the display formats applies to each data type, so Table 7–2
also shows valid combinations of data types and display formats.

Displaying Data in Alternative Formats

 7-18

Table 7–2. Data Types for Displaying Debugger Data

Valid Display Formats

Data Type c d o x e f p s u Default Display Format

char √ √ √ √ √ ASCII (c)

uchar √ √ √ √ √ Decimal (d)

short √ √ √ √ √ Decimal (d)

int √ √ √ √ √ Decimal (d)

uint √ √ √ √ √ Decimal (d)

long √ √ √ √ √ Decimal (d)

ulong √ √ √ √ √ Decimal (d)

float √ √ √ √ Exponential floating point (e)

double √ √ √ √ Exponential floating point (e)

ptr √ √ √ √ Address (p)

Here are some examples:

� To display all data of type short as an unsigned decimal, enter:

setf short, u

� To return all data of type short to its default display format, enter:

setf short, *

� To list the current display formats for each data type, enter the SETF
command with no parameters:

setf

You’ll see a display that looks something like this:

Type Format Defaults
char : ASCII
uchar : Unsigned decimal
int : Decimal
uint : Unsigned decimal
short : Decimal
ushort : Unsigned decimal
long : Decimal
ulong : Unsigned decimal
float : Exponential floating point
double : Exponential floating point
ptr : Hexadecimal

� To reset all data types back to their default display formats, enter:

setf *

Displaying Data in Alternative Formats

7-19Managing Data

Changing the default format with ?, MEM, DISP, and WA

You can also use the ?, MEM, DISP, and WA commands to show data in alter-
native display formats. (The ? and DISP commands use alternative formats
only for scalar types, arrays of scalar types, and individual members of aggre-
gate types.)

Each of these commands has an optional display format parameter that works
in the same way as the display format parameter of the SETF command.

When you don’t use a display format parameter, data is shown in its natural
format (unless you have changed the format for the data type with SETF).

Here are some examples:

� To watch the PC in decimal, enter:

wa pc,,d

� To display memory contents in octal, enter:

mem 0x0,o

� To display an array of integers as characters, enter:

disp ai,c

The valid combinations of data types and display formats listed for SETF also
apply to the data displayed with DISP, ?, WA, and MEM. For example, if you
want to use display format e or f, the data that you are displaying must be of
type float or type double. Additionally, you cannot use the s display format
parameter with the MEM command.

 7-20

8-1Using Software Breakpoints

Using Software Breakpoints

During the debugging process, you may want to halt execution temporarily so
that you can examine the contents of selected variables, registers, and
memory locations before continuing with program execution. You can do this
by setting software breakpoints at critical points in your code. You can set soft-
ware breakpoints in assembly language code and in C code. A software break-
point halts any program execution, whether you’re running or single-stepping
through code.

Software breakpoints are especially useful in combination with conditional
execution (described on page 6-14).

Topic Page

8.1 Setting a Software Breakpoint 8-2.

8.2 Clearing a Software Breakpoint 8-4.

8.3 Finding the Software Breakpoints That Are Set 8-5.

Chapter 8

Setting a Software Breakpoint

 8-2

8.1 Setting a Software Breakpoint

When you set a software breakpoint, the debugger highlights the breakpointed
line in two ways:

� It prefixes the statement with the characters BP>.

� It shows the line in a bolder or brighter font. (You can use screen-customi-
zation commands to change this highlighting method.)

If you set a breakpoint in the disassembly, the debugger also highlights the
associated C statement. If you set a breakpoint in the C source, the debugger
also highlights the associated statement in the disassembly. (If more than one
assembly language statement is associated with a C statement, the debugger
highlights the first of the associated assembly language statements.)

DISASSEMBLY
00006930 073d94f4 BP> main: STW.D2

00006934 003ce2f4 STW.D2

00006938 053d02f4 STW.D2

FILE: sample.c
0063

0064 BP> main()

0065 {

0066 int i = 0;

A breakpoint is set at
this C statement;

notice how the line is
highlighted.

A breakpoint is also
set at the associated

assembly language
statement (it’s

highlighted, too).

Notes:

1) After execution is halted by a breakpoint, you can continue program
execution by reissuing any of the run or single-step commands.

2) Up to 200 breakpoints can be set.

Setting a Software Breakpoint

8-3Using Software Breakpoints

There are several ways to set a software breakpoint:

1) Point to the line of assembly language code or C code where you’d like to
set a breakpoint.

2) Click the left button.

Repeating this action clears the breakpoint.

1) Make the FILE or DISASSEMBLY window the active window.

↑ ↓ 2) Use the arrow keys to move the cursor to the line of code where you’d like
to set a breakpoint.

F9 3) Press the F9 key.

Repeating this action clears the breakpoint.

ba If you know the address where you’d like to set a software breakpoint, you can
use the BA (breakpoint add) command. This command is useful because it
doesn’t require you to search through code to find the desired line. The syntax
for the BA command is:

ba address

This command sets a breakpoint at address. This parameter can be an abso-
lute address, any C expression, the name of a C function, or the name of an
assembly language label. You cannot set multiple breakpoints at the same
statement.

Clearing a Software Breakpoint

 8-4

8.2 Clearing a Software Breakpoint

There are several ways to clear a software breakpoint. If you clear a breakpoint
from an assembly language statement, the breakpoint is also cleared from any
associated C statement; if you clear a breakpoint from a C statement, the
breakpoint is also cleared from the associated statement in the disassembly.

1) Point to a breakpointed assembly language or C statement.

2) Click the left button.

↑ ↓ 1) Use the arrow keys or the DASM command to move the cursor to a break-
pointed assembly language or C statement.

F9 2) Press the F9 key.

br If you want to clear all the software breakpoints that are set, use the BR (break-
point reset) command.This command is useful because it doesn’t require you
to search through code to find the desired line. The syntax for the BR command
is:

br

bd If you’d like to clear one specific software breakpoint and you know the address
of this breakpoint, you can use the BD (breakpoint delete) command. The syn-
tax for the BD command is:

bd address

This command clears the breakpoint at address. This parameter can be an
absolute address, any C expression, the name of a C function, or the name
of an assembly language label. If no breakpoint is set at address, the debugger
ignores the command.

Finding the Software Breakpoints That Are Set

8-5Using Software Breakpoints

8.3 Finding the Software Breakpoints That Are Set

bl Sometimes you may need to know where software breakpoints are set. For
example, the BD command’s address parameter must correspond to the
address of a breakpoint that is set. The BL (breakpoint list) command provides
an easy way to get a complete listing of all the software breakpoints that are
currently set in your program. The syntax for this command is:

bl

The BL command displays a table of software breakpoints in the display area
of the COMMAND window. BL lists all the software breakpoints that are set,
in the order in which you set them. Here’s an example of this type of list:

 Address Symbolic Information
00006930 in main, at line 60, ”/user/fred/c6xhll/sample.c”

The address is the memory address of the breakpoint. The symbolic informa-
tion identifies the function, line number, and filename of the breakpointed C
statement:

� If the breakpoint was set in assembly language code, you’ll see only an
address unless the statement defines a symbol.

� If the breakpoint was set in C code, you’ll see the address together with
symbolic information.

 8-6

9-1Customizing the Debugger Display

Customizing the Debugger Display

The debugger display is completely configurable; you can create the interface
that is best suited for your use. Besides being able to size and position indi-
vidual windows, you can change the appearance of many of the display
features, such as window borders, how the current statement is highlighted,
etc. In addition, if you’re using a color display, you can change the colors of any
area on the screen. Once you’ve customized the display to your liking, you can
save the custom configuration for use in future debugging sessions.

Topic Page

9.1 Changing the Colors of the Debugger Display 9-2.

9.2 Changing the Border Styles of the Windows 9-8.

9.3 Saving and Using Custom Displays 9-9.

9.4 Changing the Prompt 9-12.

Chapter 9

Changing the Colors of the Debugger Display

 9-2

9.1 Changing the Colors of the Debugger Display

You can use the debugger with a color or a monochrome display; the com-
mands described in this section are most useful if you have a color display. If
you are using a monochrome display, these commands change the shades on
your display. For example, if you are using a black-and-white display, these
commands change the shades of gray that are used.

color
scolor

You can use the COLOR or SCOLOR command to change the colors of areas
in the debugger display. The format for these commands is:

color area name, attribute1 [, attribute2 [, attribute3 [, attribute4]]]
scolor area name, attribute1 [, attribute2 [, attribute3 [, attribute4]]]

These commands are similar. However, SCOLOR updates the screen imme-
diately, and COLOR doesn’t update the screen (the new colors/attributes take
effect as soon as the debugger executes another command that updates the
screen). You might use the COLOR command several times, followed by an
SCOLOR command to put all of the changes into effect at once.

The area name parameter identifies the areas of the display that are affected.
The attributes identify how the areas are affected. Table 9–1 lists the valid
values for the attribute parameters.

Table 9–1. Colors and Other Attributes for the COLOR and SCOLOR Commands

(a) Colors

black blue green cyan

red magenta yellow white

(b) Other attributes

bright blink

The first two attribute parameters usually specify the foreground and
background colors for the area. If you do not supply a background color, the
debugger uses black as the background.

Table 9–2 lists valid values for the area name parameters. This is a long list;
the subsections following the table further identify these areas.

Changing the Colors of the Debugger Display

9-3Customizing the Debugger Display

Table 9–2. Summary of Area Names for the COLOR and SCOLOR Commands

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

Note: Listing order is left to right, top to bottom.

You don’t have to type an entire attribute or area name; you need to type only
enough letters to uniquely identify either parameter. If you supply ambiguous
attribute names, the debugger interprets the names in this order: black, blue,
bright, blink. If you supply ambiguous area names, the debugger interprets
them in the order that they’re listed in Table 9–2 (left to right, top to bottom).

The remainder of this section identifies these areas.

Area names: common display areas

CPU
A0 00006ce8 B0 00000000 A1 00000000

B1 00000000 A2 00000100 B2 00000000

A3 ffffffdd B3 00000001 A4 00000002

B4 00000100 A5 00000001 B5 00000000

Background

Blanks

Area identification Parameter name

Screen background (behind all windows) background

Window background (inside windows) blanks

Changing the Colors of the Debugger Display

 9-4

Area names: window borders

COMMAND

>>>

Loading sample.out

Done

win_hiborder

WATCH

1: A0 0x00007f24

2: X+X 4

3: PC 0x000079c0

win_border

win_resize

An inactive
window

An active
window

Area identification Parameter name

Window border for any window that isn’t active win_border

The reversed L in the lower right corner of a resizable
window

win_resize

Window border of the active window win_hiborder

Area names: COMMAND window

COMMAND

>>> go main

cmd_echo

cmd_inputcmd_prompt cmd_cursor

Done

file sample.c

wa eee

Name ”eee” not found
error_msg

Area identification Parameter name

Echoed commands in display area cmd_echo

Errors shown in display area error_msg

Command-line prompt cmd_prompt

Text that you enter on the command line cmd_input

Command-line cursor cmd_cursor

Changing the Colors of the Debugger Display

9-5Customizing the Debugger Display

Area names: DISASSEMBLY and FILE windows

DISASSEMBLY

00006930 073d94f4 main: STW.D2
00006934 003ce2f4 STW.D2
00006938 053d02f4 STW.D2
0000693c 05bd22f4 STW.D2
00006940 063d42f4 STW.D2
00006944 06bd62f4 STW.D2

asm_data

FILE: t1.c

asm_clabel

asm_label file_brk

file_line

file_text

file_pc

file_pc_brk

00053 extern call();

00054 extern meminit():

00055 main()

00056 {

*eof

asm_cdata

file_eof

Area identification Parameter name

Object code in DISASSEMBLY window that is associated
with current C statement

asm_cdata

Object code in DISASSEMBLY window asm_data

Addresses in DISASSEMBLY window asm_label

Addresses in DISASSEMBLY window that are associated
with current C statement

asm_clabel

Line numbers in FILE window file_line

End-of-file marker in FILE window file_eof

Text in FILE or DISASSEMBLY window file_text

Breakpointed text in FILE or DISASSEMBLY window file_brk

Current PC in FILE or DISASSEMBLY window file_pc

Breakpoint at current PC in FILE or DISASSEMBLY
window

file_pc_brk

Changing the Colors of the Debugger Display

 9-6

Area names: data-display windows

MEMORY

field_textfield_label

field_edit

00000100 06be14f6 063de2f6 05bdc2f6

0000010c 053da2f6 06bd82f4 063d62f4

00000118 05bd42f5 00000000 05080059

00000124 053d22f4 000f8411 05a80064

00000130 01280064 00000001 00000000

0000013c 000 00000 0000ae29 003d02f5

field_error

field_hilite

Area identification Parameter name

Label of a window field (includes register names in CPU win-
dow, addresses in MEMORY window, index numbers and
labels in WATCH window, member names in DISP window)

field_label

Text of a window field (includes data values for all data-dis-
play windows) and of most command output messages in
command window

field_text

Text of a highlighted field field_hilite

Text of a field that has an error (such as an invalid memory
location)

field_error

Text of a field being edited (includes data values for all data-
display windows)

field_edit

Changing the Colors of the Debugger Display

9-7Customizing the Debugger Display

Area names: menu bar and pulldown menus

menu_bar

menu_border

menu_entrymenu_cmd

menu_hilite
menu_hicmd

Load Break Watch
Add
Delete
Reset

Memory Color Mode

Area identification Parameter name

Top line of display screen; background to main menu
choices

menu_bar

Border of any pulldown menu menu_border

Text of a menu entry menu_entry

Invocation key for a menu or menu entry menu_cmd

Text for current (selected) menu entry menu_hilite

Invocation key for current (selected) menu entry menu_hicmd

Changing the Border Styles of the Windows

 9-8

9.2 Changing the Border Styles of the Windows

In addition to changing the colors of areas in the display, the debugger allows
you to modify the border styles of the windows.

border Use the BORDER command to change window border styles. The format for
this command is:

border [active window style] [,[inactive window style] [, resize style]]

This command changes the border styles of the active window, the inactive
windows, and any window that is being resized. The debugger supports nine
border styles. Each parameter for the BORDER command must be one of the
numbers that identifies these styles:

Index Style

0 Double-lined box

1 Single-lined box

2 Solid 1/2-tone top, double-lined sides and bottom

3 Solid 1/4-tone top, double-lined sides and bottom

4 Solid box, thin border

5 Solid box, heavy sides, thin top and bottom

6 Solid box, heavy borders

7 Solid 1/2-tone box

8 Solid 1/4-tone box

Here are some examples of the BORDER command. Note that you can skip
parameters, if desired.

border 6,7,8 Change style of active, inactive, and resize windows
border 1,,2 Change style of active and resize windows
border ,3 Change style of inactive window

You can execute the BORDER command as the Border selection on the Color
pulldown menu. The debugger displays a dialog box so that you can enter the
parameter values; in the dialog box, active window style is called foreground,
and inactive window style is called background.

Saving and Using Custom Displays

9-9Customizing the Debugger Display

9.3 Saving and Using Custom Displays

The debugger allows you to save and use as many custom configurations as
you like.

When you invoke the debugger, it looks for a screen configuration file called
init.clr. The screen configuration file defines how various areas of the display
will appear. If the debugger doesn’t find this file, it uses the default screen con-
figuration. Initially, init.clr defines screen configurations that exactly match the
default configuration.

The debugger supports two commands for saving and restoring custom
screen configurations into files. The filenames that you use for restoring
configurations must correspond to the filenames that you used for saving con-
figurations. Note that these are binary files, not text files, so you can’t edit the
files with a text editor.

Changing the default display for monochrome monitors

The default display is most useful with color monitors. The debugger highlights
changed values, messages, and other information with color; this may not be
particularly helpful if you are using a monochrome monitor.

The debugger package includes another screen configuration file named
mono.clr, which defines a screen configuration that can be used with
monochrome monitors. The best way to use this configuration is to rename the
file:

1) Rename the original init.clr file—you might want to call it color.clr.

2) Next, rename the mono.clr file. Call it init.clr. Now, whenever you invoke
the debugger, it will automatically come up with a customized screen
configuration for monochrome monitors.

If you aren’t happy with the way that this file defines the screen configuration,
you can customize it.

Saving and Using Custom Displays

 9-10

Saving a custom display

ssave Once you’ve customized the debugger display to your liking, you can use the
SSAVE command to save the current screen configuration to a file. The format
for this command is:

ssave [filename]

This saves the screen resolution, border styles, colors, window positions, win-
dow sizes, and (on PCs) video mode (EGA, VGA, etc.) for all debugging
modes.

The filename parameter names the new screen configuration file. You can
include path information (including relative pathnames); if you don’t specify
path information, the debugger places the file in the current directory. If you
don’t supply a filename, the debugger saves the current configuration into a
file named init.clr.

Note that you can execute this command as the Save selection on the Color
pulldown menu.

Loading a custom display

sconfig You can use the SCONFIG command to restore the display to a particular con-
figuration. The format for this command is:

sconfig [filename]

This restores the screen resolution, colors, window positions, window sizes,
border styles, and (on PCs) video mode (EGA, CGA, MDA, etc.) saved in file-
name. Screen resolution and video mode are restored either by changing the
mode (on video cards with switchable modes) or by resizing the debugger
screen (on other hosts).

If you don’t supply a filename, the debugger looks for init.clr. The debugger
searches for the file in the current directory and then in directories named with
the D_DIR environment variable.

Note that you can execute this command as the Load selection on the Color
pulldown menu.

Saving and Using Custom Displays

9-11Customizing the Debugger Display

Note:

The file created by the SSAVE command in this version of the debugger
saves positional, screen size, and video mode information that was not
saved by SSAVE in previous versions of the debugger. The format of this new
information is not compatible with the old format. If you attempt to load an
earlier version’s SCONFIG file, the debugger will issue an error message
and stop the load.

Invoking the debugger with a custom display

If you set up the screen in a way that you like and always want to invoke the
debugger with this screen configuration, you have two choices for
accomplishing this:

� Save the configuration in init.clr.

� Add a line to the batch file that the debugger executes at invocation time
(init.cmd). This line should use the SCONFIG command to load the cus-
tom configuration.

Returning to the default display

If you saved a custom configuration into init.clr but don’t want the debugger to
come up in that configuration, rename the file or delete it. If you are in the
debugger, have changed the configuration, and would like to revert to the
default, just execute the SCONFIG command without a filename.

Changing the Prompt

 9-12

9.4 Changing the Prompt

prompt The debugger enables you to change the command-line prompt by using the
PROMPT command. The format of this command is:

prompt new prompt

The new prompt can be any string of characters, excluding semicolons and
commas. If you type a semicolon or a comma, it terminates the prompt string.

Note that the SSAVE command doesn’t save the command-line prompt as part
of a custom configuration. The SCONFIG command doesn’t change the
command-line prompt. If you change the prompt, it stays changed until you
change it again, even if you use SCONFIG to load a different screen configura-
tion.

If you always want to use a different prompt, you can add a PROMPT com-
mand to the init.cmd batch file that the debugger executes at invocation time.

You can also execute this command as the Prompt selection on the Color
pulldown menu.

10-1Profiling Code Execution

Profiling Code Execution

The profiling environment is a special debugger environment that lets you
collect execution statistics for your code.

Note that the profiling environment is separate from the basic debugging envi-
ronment; the only way to switch between the two environments is by exiting
and then reinvoking the debugger.

Topic Page

10.1 An Overview of the Profiling Process 10-2.

10.2 Entering the Profiling Environment 10-3.

10.3 Defining Areas for Profiling 10-5.

10.4 Defining the Stopping Point 10-13.

10.5 Running a Profiling Session 10-15.

10.6 Viewing Profile Data 10-17.

10.7 Saving Profile Data to a File 10-22.

Chapter 10

An Overview of the Profiling Process

 10-2

10.1 An Overview of the Profiling Process
Profiling consists of five simple steps:

Enter the profiling environment. See Entering the Profiling Envi-
ronment, page 10-3.

Identify the areas of code where
you’d like to collect statistics.

See Defining Areas for Profiling,
page 10-5.

Identify the profiling session
stopping points.

See Defining a Stopping Point,
page 10-13.

Step 2

Step 3

Step 1

Begin profiling. See Running a Profiling Ses-
sion, page 10-15.

Step 4

View the profile data. See Viewing Profile Data, page
10-17.

Step 5

Note:

When you compile a program that will be profiled, you must use the –g and
the –as options. The –g option includes symbolic debugging information; the
–as option ensures that you will be able to include ranges as profile areas.

A profiling strategy

The profiling environment provides a method for collecting execution statistics
about specific areas in your code. This gives you immediate feedback on your
application’s performance. Here’s a suggestion for a basic approach to opti-
mizing the performance of your program.

1) Mark all the functions in your program as profile areas.

2) Run a profiling session; find the busiest functions.

3) Unmark all the functions.

4) Mark the individual lines in the busy functions and run another profiling
session.

Entering the Profiling Environment

10-3Profiling Code Execution

10.2 Entering the Profiling Environment

To enter the profiling environment, invoke the debugger with the –profile op-
tion. At the system command line, enter the appropriate command:

sim6x –profile

Use any additional debugger options that you desire (–b, –p, etc.).

Restrictions of the profiling environment

Some restrictions apply to the profiling environment:

� You’ll always be in mixed mode.

� COMMAND, DISASSEMBLY, FILE, and PROFILE are the only windows
available; additional windows, such as the WATCH window, cannot be
opened.

� Breakpoints cannot be set. (However, you can use a similar feature called
stopping points when you mark sections of code for profiling.)

� The profiling environment supports only a subset of the debugger
commands. Table 10–1 lists the debugger commands that can and can’t
be used in the profiling environment.

Table 10–1. Debugger Commands That Can/Can’t Be Used in the Profiling Environment

Can be used Can’t be used

?
ALIAS
CD
CLS
DASM
DIR
ECHO
EVAL
FILE
FUNC
IF/ELSE/ENDIF
LOAD
LOOP/ENDLOOP
MA
MAP
MD
ML
MOVE

MR
PROMPT
QUIT
RELOAD
RESET
RESTART
SCONFIG
SIZE
SLOAD
SSAVE
SYSTEM
TAKE
UNALIAS
USE
VERSION
WIN
ZOOM

ADDR
ASM
BA
BD
BL
BORDER
BR
C
CALLS
CNEXT
COLOR
CSTEP
DISP
FILL
GO

HALT
MEM
MIX
MS
NEXT
RETURN
RUN
SCOLOR
SETF
SOUND
STEP
WA
WD
WHATIS
WR

Be sure you don’t use any of the “can’t be used” commands in your initial-
ization batch file.

Entering the Profiling Environment

 10-4

Using pulldown menus in the profiling environment

The debugger displays a different menu bar in the profiling environment:

mAp Mark Enable Disable Unmark View Stop–points ProfileLoad

The Load menu corresponds to the Load menu in the basic debugger environ-
ment. The mAp menu provides memory map commands available from the
basic Memory menu. The other entries provide access to profiling commands
and features.

The profiling environment’s pulldown menus operate like the basic debugger
pulldown menus. However, several of the menus have additional submenus.
A submenu is indicated by a > character following a menu item. For example,
here’s one of the submenus for the Mark menu:

Mark

C level >
Asm level > Line areas >

Range areas >
Function areas >

Explicitly
in one Function

C level >
Line areas >

Explicitly
in one F unction

Chapter 11, Summary of Commands and Special Keys, shows which debug-
ger commands are associated with the menu items in the basic debugger pull-
down menus. Because the profiling environment supports over 100 profile-
specific commands, it’s not practical to show the commands associated with
the menu choices. Here’s a tip to help you with the profiling commands: the
highlighted menu letters form the name of the corresponding debugger com-
mand. For example, if you prefer the function-key approach to using menus,
the highlighted letters in Mark→ C level→Line areas→in one Function show
that you could press ALT M , C , L , F . This also shows that the correspond-
ing debugger command is MCLF.

Defining Areas for Profiling

10-5Profiling Code Execution

10.3 Defining Areas for Profiling

Within the profiling environment, you can collect statistics on three types of
areas:

� Individual lines in C or disassembly
� Ranges in C or disassembly
� Functions in C only

To identify any of these areas for profiling, mark the line, range, or function. You
can disable areas so that they won’t affect the profile data, and you can reen-
able areas that have been disabled. You can also unmark areas that you are
no longer interested in.

The mouse is the simplest way to mark, disable, enable, and unmark tasks.
The pulldown menus also support these tasks and more complex tasks.

The following subsections explain how to mark, disable, reenable, and unmark
profile areas by using the mouse or the pulldown menus. The individual com-
mands are summarized in Restrictions of the profiling environment on page
10-3. Restrictions on profiling areas are summarized on page 10-12.

Marking an area

Marking an area qualifies it for profiling so that the debugger can collect timing
statistics about the area.

Remember, to display C code, use the FILE or FUNC command; to display dis-
assembly, use the DASM command.

Notes:

1) Marking an area in C does not mark the associated code in disassembly.

2) Areas can be nested; for example, you can mark a line within a marked
range. The debugger will report statistics for both the line and the func-
tion.

3) Ranges cannot overlap, and they cannot span function boundaries.

Defining Areas for Profiling

 10-6

Marking a line. These instructions apply to both C and disassembly.

4) Point to the line you want to mark.

5) Click the left mouse button.

The beginning of the line will be highlighted with >>.

6) Click the left mouse button again.

The beginning of the line will be highlighted with Le> (line enabled).

Marking a range. These instructions apply to both C and disassembly.

1) Point to the first line of the range you want to mark.

2) Click the left mouse button.

The beginning of the line will be highlighted with >>.

3) Point to the last line of the range.

4) Click the left mouse button again.

The beginning of the line will be highlighted with Re> (range enabled),
marking the beginning of the range. The last line will be highlighted with
<<, marking the end of the range.

Marking a function. These instructions apply to C only.

1) Point to the statement that declares the function you want to mark.

2) Click the left mouse button.

The beginning of the line will be highlighted with Fe> (function enabled).

Defining Areas for Profiling

10-7Profiling Code Execution

Table 10–2 lists the menu selections for marking areas. The highlighted areas
show the keys that you can use if you prefer to use the function-key method
of selecting menu choices.

Table 10–2. Menu Selections for Marking Areas

To mark this area
C only:
Mark→C level

Disassembly only:
Mark→Asm level

Lines

� By line number†

� All lines in a function

→Line areas

→Explicitly

→in one Function

→Line areas

→Explicitly

→in one Function

Ranges

� By line numbers†

→Range areas

→Explicitly

→Range areas

→Explicitly

Functions

� By function name

� All functions in a module

� All functions everywhere

→Function areas

→Explicitly

→in one Module

→Globally

not applicable

† C areas are identified by line number; disassembly areas are identified by address.

Disabling an area

At times, it is useful to identify areas that you don’t want to impact profile statis-
tics. To do this, you should disable the appropriate area. Disabling effectively
subtracts the timing information of the disabled area from all profile areas that
include or call the disabled area. Areas must be marked before they can be
disabled.

For example, if you have marked a function that calls a standard C function
such as malloc(), you may not want malloc() to affect the statistics for the call-
ing function. You could mark the line that calls malloc(), and then disable the
line. This way, the profile statistics for the function would not include the statis-
tics for malloc().

Note:

If you disable an area after you’ve already collected statistics on it, that infor-
mation will be lost.

Defining Areas for Profiling

 10-8

The simplest way to disable an area is to use the mouse, as described below.

Disabling a range area:

1) Point to the marked line.

2) Click the left mouse button once.

The beginning of the line will be highlighted with Rd> (range disabled).

Disabling a function area:

1) Point to the marked statement that declares the function.

2) Click the left mouse button once.

The beginning of the line will be highlighted with Fd> (function disabled).

Defining Areas for Profiling

10-9Profiling Code Execution

Table 10–3 lists the menu selections for disabling areas. The highlighted areas
show the keys that you can use if you prefer to use the function-key method
of selecting menu choices.

Table 10–3. Menu Selections for Disabling Areas

To disable this area
C only:
Disable→C level

Disassembly only:
Disable→Asm level

C and disassembly:
Disable→Both levels

Lines

� By line number†

� All lines in a function

� All lines in a module

� All lines everywhere

→Line areas

→Explicitly

→in one Function

→in one Module

→Globally

→Line areas

→Explicitly

→in one Function

→in one Module

→Globally

→Line areas

not applicable

→in one Function

→in one Module

→Globally

Ranges

� By line numbers†

� All ranges in a function

� All ranges in a module

� All ranges everywhere

→Range areas

→Explicitly

→in one Function

→in one Module

→Globally

→Range areas

→Explicitly

→in one Function

→in one Module

→Globally

→Range areas

not applicable

→in one Function

→in one Module

→Globally

Functions

� By function name

� All functions in a module

� All functions everywhere

→Function areas

→Explicitly

→in one Module

→Globally

not applicable

→Function areas

not applicable

→in one Module

→Globally

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

→All areas

→in one Function

→in one Module

→Globally

→All areas

→in one Function

→in one Module

→Globally

→All areas

→in one Function

→in one Module

→Globally

† C areas are identified by line number; disassembly areas are identified by address.

Defining Areas for Profiling

 10-10

Reenabling a disabled area

When an area has been disabled and you would like to profile it once again,
you must enable the area. To use the mouse, just point to the line, the function,
or the first line of a range, and click the left mouse button; the range will once
again be highlighted in the same way as a marked area.

In addition to using the mouse, you can enable an area by using one of the
commands listed in Table 10–4. However, the easiest way to enter these com-
mands is by accessing them from the Enable menu.

Table 10–4. Menu Selections for Enabling Areas

To enable this area
C only:
Disable→C level

Disassembly only:
Enable→Asm level

C and disassembly:
Enable→Both levels

Lines

� By line number†

� All lines in a function

� All lines in a module

� All lines everywhere

→Line areas

→Explicitly

→in one Function

→in one Module

→Globally

→Line areas

→Explicitly

→in one Function

→in one Module

→Globally

→Line areas

not applicable

→in one Function

→in one Module

→Globally

Ranges

� By line numbers†

� All ranges in a function

� All ranges in a module

� All ranges everywhere

→Range areas

→Explicitly

→in one Function

→in one Module

→Globally

→Range areas

→Explicitly

→in one Function

→in one Module

→Globally

→Range areas

not applicable

→in one Function

→in one Module

→Globally

Functions

� By function name

� All functions in a module

� All functions everywhere

→Function areas

→Explicitly

→in one Module

→Globally

not applicable

→Function areas

not applicable

→in one Module

→Globally

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

→All areas

→in one Function

→in one Module

→Globally

→All areas

→in one Function

→in one Module

→Globally

→All areas

→in one Function

→in one Module

→Globally

† C areas are identified by line number; disassembly areas are identified by address.

Defining Areas for Profiling

10-11Profiling Code Execution

Unmarking an area

If you want to stop collecting information about a specific area, unmark it. You
can use the mouse or key method.

Unmarking a line area:

1) Point to the marked line.

2) Click the right mouse button once.

The line will no longer be highlighted.

Unmarking a range area:

1) Point to the marked line.

2) Click the right mouse button once.

The line will no longer be highlighted.

Unmarking a function area:

1) Point to the marked statement that declares the function.

2) Click the right mouse button once.

The line will no longer be highlighted.

Defining Areas for Profiling

 10-12

Table 10–5 lists the selections on the Unmark menu.

Table 10–5. Menu Selections for Unmarking Areas

To unmark this area
C only:
Unmark→C level

Disassembly only:
Unmark→Asm level

C and disassembly:
Unmark→Both levels

Lines

� By line number†

� All lines in a function

� All lines in a module

� All lines everywhere

→Line areas

→Explicitly

→in one Function

→in one Module

→Globally

→Line areas

→Explicitly

→in one Function

→in one Module

→Globally

→Line areas

not applicable

→in one Function

→in one Module

→Globally

Ranges

� By line numbers†

� All ranges in a function

� All ranges in a module

� All ranges everywhere

→Range areas

→Explicitly

→in one Function

→in one Module

→Globally

→Range areas

→Explicitly

→in one Function

→in one Module

→Globally

→Range areas

not applicable

→in one Function

→in one Module

→Globally

Functions

� By function name

� All functions in a module

� All functions everywhere

→Function areas

→Explicitly

→in one Module

→Globally

not applicable

→Function areas

not applicable

→in one Module

→Globally

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

→All areas

→in one Function

→in one Module

→Globally

→All areas

→in one Function

→in one Module

→Globally

→All areas

→in one Function

→in one Module

→Globally

† C areas are identified by line number; disassembly areas are identified by address.

Restrictions on profiling areas

The following restrictions apply to profiling areas:

� There must be a minimum of three instructions between a delayed branch
and the beginning of an area.

� An area cannot begin or end on the RPTS instruction or on the instruction
to be repeated.

� An area cannot begin or end on the last instruction of a repeat block.

Defining a Stopping Point

10-13Profiling Code Execution

10.4 Defining a Stopping Point

Before you run a profiling session, you must identify the point where the debug-
ger should stop collecting statistics. By default, C programs contain an exit la-
bel, and this is defined as the default stopping point when you load your pro-
gram. (You can delete exit as a stopping point, if you wish.) If your program
does not contain an exit label, or if you prefer to stop at a different point, you
can define another stopping point. You can set multiple stopping points; the
debugger will stop at the first one it finds.

Each stopping point is highlighted in the FILE or DISASSEMBLY window with
a * character at the beginning of the line. Even though no statistics can be
gathered for areas following a stopping point, the areas will be listed in the
PROFILE window.

You can use the mouse or commands to add or delete a stopping point; you
can also use commands to list or reset all the stopping points.

Note:

You cannot set a stopping point on a statement that has already been defined
as a part of a profile area.

To set a stopping point:

1) Point to the statement that you want to add as a stopping point.

2) Click the right mouse button.

To remove a stopping point:

1) Point to the statement marking the stopping point that you want to delete.

2) Click the right mouse button.

Defining a Stopping Point

 10-14

The debugger supports several commands for adding, deleting, resetting, and
listing stopping points (described below); all of these commands can also be
entered from the Stop-points menu.

sa To add a stopping point, use the SA (stop add) command. The syntax for this
command is:

sa address

This adds address as a stopping point. The address parameter can be a label,
a function name, or a memory address.

sd To delete a stopping point, use the SD (stop delete) command. The syntax for
this command is:

sd address

This deletes address as a stopping point. As for SA, the address can be a label,
a function name, or a memory address.

sr To delete all the stopping points at once, use the SR (stop reset) command.
The syntax for this command is:

sr

This deletes all stopping points, including the default exit (if it exists).

sl To see a list of all the stopping points that are currently set, use the SL (stop
list) command. The syntax for this command is:

sl

Running a Profiling Session

10-15Profiling Code Execution

10.5 Running a Profiling Session

Once you have defined profile areas and a stopping point, you can run a profil-
ing session. You can run two types of profiling sessions:

� A full profile collects a full set of statistics for the defined profile areas.

� A quick profile collects a subset of the available statistics (it doesn’t
collect exclusive or exclusive max data, which are described in Section
10.6, Viewing Profile Data). This reduces overhead because the debugger
doesn’t have to track entering/exiting subroutines within an area.

The debugger supports commands for running both types of sessions. In addi-
tion, the debugger supports a command that helps you to resume a profiling
session. All of these commands can also be entered from the Profile menu.

pf To run a full profiling session, use the PF (profile full) command. The syntax
for this command is:

pf starting point [, update rate]

pq To run a quick profiling session, use the PQ (profile quick) command. The
syntax for this command is:

pq starting point [, update rate]

The debugger will collect statistics on the defined areas between the starting
point and the stopping point. The starting point parameter can be a label, a
function name, or a memory address. There is no default starting point.

The update rate is an optional parameter that determines how often the statis-
tics listed in the PROFILE window will be updated. The update rate parameter
can have one of these values:

0 An update rate of 0 means that the statistics listed in the PROFILE
window are not updated until the profiling session is halted. A
“spinning wheel” character will be shown at the beginning of the
PROFILE window label line to indicate that a profiling session is in
progress. 0 is the default value.

≥1 If a number greater than or equal to 1 is supplied, the statistics in the
PROFILE window are updated during the profiling session. If a value
of 1 is supplied, the data will be updated as often as possible. When
larger numbers are supplied, the data is updated less often.

<0 If a negative number is supplied, the statistics listed in the PROFILE
window are not updated until the profiling session is halted. The “spin-
ning wheel” character is not displayed.

Running a Profiling Session

 10-16

No matter which update rate you choose, you can force the PROFILE window
to be updated during a profiling session by pointing to the window header and
clicking a mouse button.

After you enter a PF or PQ command, your program restarts and runs to the
defined starting point. Profiling begins when the starting point is reached and
continues until a stopping point is reached or until you halt the profiling session
by pressing ESC .

pr Use the PR command to resume a profiling session that has halted. The syntax
for this command is:

pr [clear data [, update rate]]

The optional clear data parameter tells the debugger whether or not it should
clear out the previously collected data. The clear data parameter can have one
of these values:

0 The profiler will continue to collect data (adding it to the existing
data for the profiled areas) and to use the previous internal profile
stacks. 0 is the default value.

nonzero All previously collected profile data and internal profile stacks are
cleared.

The update rate parameter is the same as for the PF and PQ commands.

Viewing Profile Data

10-17Profiling Code Execution

10.6 Viewing Profile Data

The statistics collected during a profiling session are displayed in the
PROFILE window. Figure 10–1 shows an example of this window.

Figure 10–1. An Example of the PROFILE Window

PROFILE
 Area Name Count Inclusive Incl–Max

CL <sample>#55 2 12 6

CF xcall() 1 23 23

AR main()–00006944 1 6 6

CR <sample>#72–77 1 102 102

AL c_int00 1 7 7

AL 00007cf8 Disabled

Profile
areas

Profile data

The example in Figure 10–1 shows the PROFILE window with some default
conditions:

� Column headings show the labels for the default set of profile data,
including Count, Inclusive, Incl-Max, Exclusive, and Excl-Max.

� The data is sorted on the address of the first line in each area.

� All marked areas are listed, including disabled areas.

You can modify the PROFILE window to display selected profile areas or
different data; you can also sort the data differently. The following subsections
explain how to do these things.

Note:

To reset the PROFILE display back to its default characteristics, use
View→Reset.

Viewing different profile data

By default, the PROFILE window shows a set of statistics labeled as Count,
Inclusive, Incl-Max, Exclusive, and Excl-Max. The Address field, which is not
part of the default statistics, can also be displayed. Table 10–6 describes the
statistic that each field represents.

Viewing Profile Data

 10-18

Table 10–6. Types of Data Shown in the PROFILE Window

Label Profile data

Count The number of times a profile area is entered during a session.

Inclusive The total execution time (cycle count) of a profile area, including the execution time
of any subroutines called from within the profile area.

Incl-Max
(inclusive maximum)

The maximum inclusive time for one iteration of a profile area.

If the profiled code contains no flow control (such as conditional processing), inclu-
sive-maximum will equal the inclusive timing divided by the count.

Exclusive The total execution time (cycle count) of a profile area, excluding the execution time
of any subroutines called from within the profile area.

In general, the exclusive data provides the best statistics for comparing the execution
time of one profile area to another area.

Excl-Max
(exclusive maximum)

The maximum exclusive time for one iteration of a profile area.

Address The memory address of the line. If the area is a function or range, the Address field
shows the memory address of the first line in the area.

In addition to viewing this data in the default manner, you can view each of
these statistics individually. The benefit of viewing them individually is that in
addition to a cycle count, you are also supplied with a percentage indication
and a histogram.

In order to view the fields individually, you can use the mouse—just point to the
header line in the PROFILE window and click a mouse button. You can also
use the View→Data menu to select the field you’d like to display. When you
use the left mouse button to click on the header, fields are displayed individ-
ually in the order listed below on the left. (Use the right mouse button to go in
the opposite direction.) On the right are the corresponding menu selections.

Count

Inclusive

Incl-max

Exclusive

Excl-max

Address

Default

View→Data →Count

→Inclusive

→Inclusive Max

→Exclusive

→Exclusive Max

→Address

→All

One advantage of using the mouse is that you can change the display while
you’re profiling.

Viewing Profile Data

10-19Profiling Code Execution

Data accuracy

During a profiling session, the debugger sets many internal breakpoints and
issues a series of RUNB commands. As a result, the processor is momentarily
halted when entering and exiting profiling areas. This stopping and starting
can affect the cycle count information (due to pipeline flushing and the
mechanics of software breakpoints) so that it varies from session to session.
This method of profiling is referred to as intrusive profiling.

Treat the data as relative, not absolute. The percentages and histograms are
relevant only to the cycle count from the starting point to the stopping
point—not to overall performance. Even though the cycle counts may change
if you profiled the same area twice, the relationship of that area to other profiled
areas should not change.

Sorting profile data

By default, the data displayed in the PROFILE window is sorted according to
the memory addresses of the displayed areas. The area with the least signifi-
cant address is listed first, followed by the area with the next least significant
address, etc. When you view fields individually, the data is automatically sorted
from highest cycle count to lowest (instead of by address).

You can sort the data on any of the data fields by using the View→Sort menu.
For example, to sort all the data on the basis of the values of the Inclusive field,
use View→Sort→Inclusive; the area with the highest Count field will display
first, and the area with the lowest Count field will display last. This applies even
when you are viewing individual fields.

Viewing different profile areas

By default, all marked areas are listed in the PROFILE window. You can modify
the window to display selected areas. To do this, use the selections on the
View→Filter pulldown menu; these selections are summarized in Table 10–7.

Viewing Profile Data

 10-20

Table 10–7. Menu Selections for Displaying Areas in the PROFILE Window

To view these areas C only:
View→Filter→C level

Disassembly only:
View→Filter→Asm level

C and disassembly:
View→Filter→Both levels

Lines

� By line number

� All lines in a function

� All lines in a module

� All lines everywhere

→Line areas

→Explicitly

→in one Function

→in one Module

→Globally

→Line areas

→Explicitly

→in one Function

→in one Module

→Globally

→Line areas

not applicable

→in one Function

→in one Module

→Globally

Ranges

� By line numbers

� All ranges in a function

� All ranges in a module

� All ranges everywhere

→Range areas

→Explicitly

→in one Function

→in one Module

→Globally

→Range areas

→Explicitly

→in one Function

→in one Module

→Globally

→Range areas

not applicable

→in one Function

→in one Module

→Globally

Functions

� By function name

� All functions in a module

� All functions everywhere

→Function areas

→Explicitly

→in one Module

→Globally

not applicable

→Function areas

not applicable

→in one Module

→Globally

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

→Range areas

→in one Function

→in one Module

→Globally

→Range areas

→in one Function

→in one Module

→Globally

→Range areas

→in one Function

→in one Module

→Globally

Interpreting session data

General information about a profiling session is displayed in the COMMAND
window during and after the session. This information identifies the starting
and stopping points. It also lists statistics for three important areas:

� Run cycles shows the number of execution cycles consumed by the
program from the starting point to the stopping point.

� Profile cycles equals the run cycles minus the cycles consumed by
disabled areas.

� Hits shows the number of internal breakpoints encountered during the
profiling session.

Viewing Profile Data

10-21Profiling Code Execution

Viewing code associated with a profile area

You can view the code associated with a displayed profile area. The debugger
will update the display so that the associated C or disassembly statements are
shown in the FILE or DISASSEMBLY windows.

Use the mouse to select the profile area in the PROFILE window and display
the associated code:

1) Point to the appropriate area name in the PROFILE window.

2) Click the right mouse button.

The area name and the associated C or disassembly statement will be
highlighted. To view the code associated with another area, point and click
again.

If you are attempting to show disassembly, you may have to make several
attempts because program memory can be accessed only when the target is
not running.

Saving Profile Data to a File

 10-22

10.7 Saving Profile Data to a File

You may want to run several profiling sessions during a debugging session.
Whenever you start a new profiling session,the results of the previous session
are lost. However, you can save the results of the current profiling session to
a system file. You can use two commands to do this:

vac To save the contents of the PROFILE window to a system file, use the VAC
(view save current) command. The syntax for this command is:

vac filename

This saves only the current view; if, for example, you are viewing only the
Count field, then only that information will be saved.

vaa To save all data for the currently displayed areas, use the VAA (view save all)
command. The syntax for this command is:

vaa filename

This saves all views of the data—including the individual count, inclusive,
etc.—with the percentage indications and histograms.

Both commands write profile data to filename. The filename can include path
information. There is no default filename. If filename already exists, the
command will overwrite the file with the new data.

Note that if the PROFILE window displays only a subset of the areas that are
marked for profiling, data is saved only for those areas that are displayed. (For
VAC, the currently displayed data will be saved for the displayed areas. For
VAA, all data will be saved for the displayed areas.) If some areas are hidden
and you want to save all the data, be sure to select View→Reset before saving
the data to a file.

The file contents are in ASCII and are formatted in exactly the same manner
as they are displayed (or would be displayed) in the PROFILE window. The
general profiling-session information that is displayed in the COMMAND
window is also written to the file.

11-1 Chapter Title—Attribute Reference

Summary of Commands
 and Special Keys

This chapter summarizes the basic debugger commands, profiling com-
mands, and the debugger’s special key sequences.

Topic Page

11.1 Functional Summary of Debugger Commands 11-2.

11.2 How the Menu Selections Correspond to Commands 11-8.

11.3 Alphabetical Summary of Debugger Commands 11-10.

11.4 Summary of Profiling Commands 11-46.

11.5 Summary of Special Keys 11-50.

Chapter 11

Functional Summary of Debugger Commands

 11-2

11.1 Functional Summary of Debugger Commands

This section summarizes the debugger commands according to these catego-
ries:

� Changing modes. These commands (listed on page 11-3) enable you
to switch freely between the debugging modes (auto, mixed, minimal, and
assembly).

� Managing windows. These commands (listed on page 11-3) enable you
to select the active window and move or resize the active window.

� Displaying and changing data. These commands (listed on page 11-3)
enable you to display and evaluate a variety of data items.

� Performing system tasks. These commands (listed on page 11-4)
enable you to perform several DOS-like functions and provide you with
some control over the target system.

� Managing breakpoints. These commands (listed on page 11-4) provide
you with a command line method for controlling software breakpoints.

� Displaying files and loading programs. These commands (listed on
page 11-5) enable you to change the displays in the FILE and
DISASSEMBLY windows and to load object files into memory.

� Customizing the screen. These commands (listed on page 11-5) allow
you to customize the debugger display, then save and later reuse the
customized displays.

� Memory mapping. These commands (listed on page 11-5) enable you
to define the areas of target memory that the debugger can access.

� Running programs. These commands (listed on page 11-6) provide
you with a variety of methods for running your programs in the debugger
environment.

� Profiling commands. These commands (listed on page 11-7) enable
you to collect execution statistics for your code.

 Functional Summary of Debugger Commands

11-3 Summary of Commands and Special Keys

Changing modes

To put the debugger in
Use this
command See page

Assembly mode asm 11-12

Auto mode for debugging C code c 11-15

Minimal mode minimal 11-27

Mixed mode mix 11-27

Managing windows

To do this
Use this
command See page

Reposition the active window move 11-28

Resize the active window size 11-37

Select the active window win 11-44

Make the active window as large as possible zoom 11-45

Displaying and changing data

To do this
Use this
command See page

Evaluate and display the result of a C expression ? 11-10

Display the values in an array or structure or display
the value that a pointer is pointing to

disp 11-18

Evaluate a C expression without displaying the
results

eval 11-22

Display a different range of memory in the
MEMORY window or display an additional
MEMORY window

mem 11-26

Change the default format for displaying data
values

setf 11-36

Continuously display the value of a variable,
register, or memory location within the WATCH
window

wa 11-42

Delete a data item from the WATCH window wd 11-43

Show the type of a data item whatis 11-43

Delete all data items from the WATCH window and
close the WATCH window

wr 11-44

Functional Summary of Debugger Commands

 11-4

Performing system tasks

To do this
Use this
command See page

Define your own command string alias 11-12

Clear all displayed information from the display
area of the COMMAND window

cls 11-15

Record the information shown in the display area of
the COMMAND window

dlog 11-20

Display a string to the COMMAND window while
executing a batch file

echo 11-21

Conditionally execute debugger commands in a
batch file

if/else/endif 11-23

Loop debugger commands in a batch file loop/endloop 11-24

Exit the debugger quit 11-32

Reset the target system reset 11-32

Associate a beeping sound with the display of error
messages

sound 11-38

Execute commands from a batch file take 11-40

Delete an alias definition unalias 11-40

Name additional directories that can be searched
when you load source files

use 11-41

Managing breakpoints

To do this
Use this
command See page

Add a software breakpoint ba 11-13

Delete a software breakpoint bd 11-13

Display a list of all the software breakpoints that are
set

bl 11-13

Reset (delete) all software breakpoints br 11-14

 Functional Summary of Debugger Commands

11-5 Summary of Commands and Special Keys

Displaying files and loading programs

To do this
Use this
command See page

Display C and/or assembly language code at a
specific point

addr 11-11

Reopen the CALLS window calls 11-15

Display assembly language code at a specific
address

dasm 11-18

Display a text file in the FILE window file 11-22

Display a specific C function func 11-23

Load an object file load 11-24

Load only the object-code portion of an object file reload 11-32

Load only the symbol-table portion of an object file sload 11-38

Customizing the screen

To do this
Use this
command See page

Change the border style of any window border 11-14

Change the screen colors, but don’t update the
screen immediately

color 11-16

Change the command-line prompt prompt 11-31

Change the screen colors and update the screen
immediately

scolor 11-34

Load and use a previously saved custom screen
configuration

sconfig 11-35

Save a custom screen configuration ssave 11-39

Memory mapping

To do this
Use this
command See page

Initialize a block of memory fill 11-22

Add an address range to the memory map ma 11-25

Enable or disable memory mapping map 11-25

Delete an address range from the memory map md 11-26

Display a list of the current memory map settings ml 11-27

Reset the memory map (delete all ranges) mr 11-29

Save a block of memory to a system file ms 11-29

Functional Summary of Debugger Commands

 11-6

Running programs

To do this
Use this
command See page

Single-step through assembly language or C code,
one C statement at a time; step over function calls

cnext 11-16

Single-step through assembly language or C code,
one C statement at a time

cstep 11-17

Run a program up to a certain point go 11-23

Single-step through assembly language or C code;
step over function calls

next 11-29

Reset the target system reset 11-32

Reset the program entry point restart 11-32

Execute code in a function and return to the func-
tion’s caller

return 11-33

Run a program run 11-33

Single-step through assembly language or C code step 11-39

Execute commands from a batch file take 11-40

 Functional Summary of Debugger Commands

11-7 Summary of Commands and Special Keys

Profiling commands

All of the profiling commands can be entered from the pulldown menus. In
many cases, using the pulldown menus is the easiest way to use some of these
commands. For this reason and also because there are over 100 profiling
commands, most of these commands are not described individually in this
chapter (as the basic debugger commands are).

Listed below are some of the profiling commands that you might choose to
enter from the command line instead of from a menu; these commands are
also described in the alphabetical command summary. The remaining profiling
commands are summarized in Section 11.4, Summary of Profiling Com-
mands, on page 11-46.

To do this
Use this
command See page

Run a full profiling session pf 11-30

Run a quick profiling session pq 11-31

Resume a profiling session pr 11-31

Add a stopping point sa 11-33

Delete a stopping point sd 11-35

List all the stopping points sl 11-37

Delete all the stopping points sr 11-38

Save all the profile data to a file vaa 11-41

Save currently displayed profile data to a file vac 11-41

Reset the display in the PROFILE window to show
all areas and the default set of data

vr 11-42

How the Menu Selections Correspond to Commands

 11-8

11.2 How the Menu Selections Correspond to Commands

The following sample screens illustrate the relationship of the basic debugger
commands to the menu bar and pulldown menus.

You can use the menus with or without a mouse. To access a menu from the
keyboard, press the ALT key and the letter that’s highlighted in the menu
name. (For example, to display the Load menu, press ALT L .) Then, to make
a selection from the menu, press the letter that’s highlighted in the command
you’ve selected. (For example, on the Load menu, to execute FIle, press F .)
If you don’t want to execute a command, press ESC to close the menu.

Note:

Because the profiling environment supports over 100 profile-specific
commands, it’s not practical to show the commands associated with the
profile menu choices.

Program-execution commands

Run=F5

Step=F8

Next=F10

RUN command
(without a parameter)

NEXT command
(without a parameter)

STEP command
(without a parameter)

File/load commands

Load
Load
Reload
Symbols

REstart
ReseT

File

RELOAD command

SLOAD command

RESTART command

RESET command

FILE command

LOAD command

Breakpoint commands

Break
Add
Delete
Reset
List

BA command

BD command

BR command

BL command

 How the Menu Selections Correspond to Commands

11-9 Summary of Commands and Special Keys

Watch commands

Watch
Add
Delete
Reset

WA command

WD command

WR command

Memory commands

Memory
Add
Delete
Reset
List
Enable

Fill
Save

MA command

MD command

MR command

ML command

MAP command

FILL command

MS command

Screen-configuration commands

Color
Load
Save
Config

Border
Prompt

SCONFIG command

SSAVE command

SCOLOR command

BORDER command

PROMPT command

Mode commands

MoDe
C (auto)
Asm
Mixed
Mi Nimal

C command

ASM command

MIX command

MINIMAL command

? Alphabetical Summary of Debugger Commands

 11-10

11.3 Alphabetical Summary of Debugger Commands

Commands are not case sensitive; to emphasize this, command names are
shown in both uppercase and lowercase throughout this book.

Evaluate Expression?

Syntax ? expression [, display format]

Menu selection none

Environments basic debugger profiling

Description The ? (evaluate expression) command evaluates an expression and shows
the result in the display area of the COMMAND window. The expression can
be any C expression, including an expression with side effects; however, you
cannot use a string constant or function call in the expression.

If the result of expression is not an array or structure, then the debugger
displays the results in the COMMAND window. If expression is a structure or
array, ? displays the entire contents of the structure or array; you can halt long
listings by pressing ESC .

When you use the optional display format parameter, data is displayed in one
of the following formats:

Parameter Result Parameter Result

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal

 Alphabetical Summary of Debugger Commands addr

11-11 Summary of Commands and Special Keys

Display Code at Specified Addressaddr

Syntax addr address
addr function name

Menu selection none

Environments basic debugger profiling

Description Use the ADDR command to display C code or the disassembly at a specific
point. ADDR’s behavior changes, depending on the current debugging mode:

� In assembly mode, ADDR works like the DASM command, positioning the
code starting at address or at function name as the first line of code in the
DISASSEMBLY window.

� In a C display, ADDR works like the FUNC command, displaying the code
starting at address or at function name in the FILE window.

� In mixed mode, ADDR affects both the DISASSEMBLY and FILE
windows.

Note:

ADDR affects the FILE window only if the specified address is in a C function.

alias, asm Alphabetical Summary of Debugger Commands

 11-12

Define Custom Command Stringalias

Syntax alias [alias name [, ”command string”]]

Menu selection none

Environments basic debugger profiling

Description You can use the ALIAS command to associate one or more debugger
commands with a single alias name.

You can include as many commands in the command string as you like, as long
you separate them with semicolons and enclose the entire string of commands
in quotation marks. You can also identify command parameters by a percent
sign followed by a number (%1, %2, etc.). The total number of characters for
an individual command (expanded to include parameter values) is limited to
132 (this restriction applies to the debugger version of the ALIAS command
only).

Previously defined alias names can be included as part of the definition for a
new alias.

To find the current definition of an alias, enter the ALIAS command with the
alias name only. To see a list of all defined aliases, enter the ALIAS command
with no parameters.

Enter Assembly Modeasm

Syntax asm

Menu selection MoDe→Asm

Environments basic debugger profiling

Description The ASM command changes from the current debugging mode to assembly
mode. If you’re already in assembly mode, the ASM command has no effect.

 Alphabetical Summary of Debugger Commands ba, bd, bl

11-13 Summary of Commands and Special Keys

Add Software Breakpointba

Syntax ba address

Menu selection B reak→Add

Environments basic debugger profiling

Description The BA command sets a software breakpoint at a specific address. This
command is useful because it doesn’t require you to search through code to
find the desired line. The address can be an absolute address, any C expres-
sion, the name of a C function, or the name of an assembly language label.

Breakpoints can be set in program memory (RAM) only; the address param-
eter is treated as a program-memory address.

Delete Software Breakpointbd

Syntax bd address

Menu selection B reak→ Delete

Environments basic debugger profiling

Description The BD command clears a software breakpoint at a specific address. The
address can be an absolute address, any C expression, the name of a C func-
tion, or the name of an assembly language label.

List Software Breakpointsbl

Syntax bl

Menu selection B reak→List

Environments basic debugger profiling

Description The BL command provides an easy way to get a complete listing of all the soft-
ware breakpoints that are currently set in your program. It displays a table of
breakpoints in the display area of the COMMAND window. BL lists all the
breakpoints that are set, in the order in which you set them.

border, br Alphabetical Summary of Debugger Commands

 11-14

Change Style of Window Borderborder

Syntax border [active window style] [, [inactive window style] [,resize window style]]

Menu selection C olor→Border

Environments basic debugger profiling

Description The BORDER command changes the border style of the active window, the
inactive windows, and the border style of any window that you’re resizing. The
debugger supports nine border styles. Each parameter for the BORDER
command must be one of the numbers that identify these styles:

Index Style

0 Double-lined box

1 Single-lined box

2 Solid 1/2-tone top, double-lined sides/bottom

3 Solid 1/4-tone top, double-lined sides/bottom

4 Solid box, thin border

5 Solid box, heavy sides, thin top/bottom

6 Solid box, heavy borders

7 Solid 1/2-tone box

8 Solid 1/4-tone box

Note that you can execute the BORDER command as the Border selection on
the Color pulldown menu. The debugger displays a dialog box so that you can
enter the parameter values; in the dialog box, active window style is called
foreground, and inactive window style is called background.

Reset Software Breakpointbr

Syntax br

Menu selection B reak→Reset

Environments basic debugger profiling

Description The BR command clears all software breakpoints that are set.

 Alphabetical Summary of Debugger Commands c, calls, cls

11-15 Summary of Commands and Special Keys

Enter Auto Modec

Syntax c

Menu selection MoDe→C (auto)

Environments basic debugger profiling

Description The C command changes from the current debugging mode to auto mode. If
you’re already in auto mode, the C command has no effect.

Open CALLS Windowcalls

Syntax calls

Menu selection none

Environments basic debugger profiling

Description The CALLS command displays the CALLS window. The debugger displays
this window automatically when you are in auto/C or mixed mode. However,
you can close the CALLS window; the CALLS command opens the window
again.

Clear Screencls

Syntax cls

Menu selection none

Environments basic debugger profiling

Description The CLS command clears all displayed information from the display area of
the COMMAND window.

cnext, color Alphabetical Summary of Debugger Commands

 11-16

Single-Step C, Next Statementcnext

Syntax cnext [expression]

Menu selection Next=F10 (in C code)

Environments basic debugger profiling

Description The CNEXT command is similar to the CSTEP command. It runs a program
one C statement at a time, updating the display after executing each state-
ment. If you’re using CNEXT to step through assembly language code, the
debugger won’t update the display until it has executed all assembly language
statements associated with a single C statement. Unlike CSTEP, CNEXT
steps over function calls rather than stepping into them—you don’t see the
single-step execution of the function call.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional single-
step execution (Running code conditionally, page 6-14, discusses this in
detail).

Change Screen Colorscolor

Syntax color area name, attribute1 [,attribute2 [,attribute3 [,attribute4]]]

Menu selection none

Environments basic debugger profiling

Description The COLOR command changes the color of specified areas of the debugger
display. COLOR doesn’t update the display; the changes take effect when
another command, such as SCOLOR, updates the display. The area name
parameter identifies the areas of the display that are affected. The attributes
identify how the areas are affected. The first two attribute parameters usually
specify the foreground and background colors for the area. If you do not supply
a background color, the debugger uses black as the background.

Valid values for the attribute parameters include:

black blue green cyan

red magenta yellow white

bright blink

 Alphabetical Summary of Debugger Commands color, cstep

11-17 Summary of Commands and Special Keys

Valid values for the area name parameters include:

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

You don’t have to type an entire attribute or area name; you need to type only
enough letters to uniquely identify the attribute. If you supply ambiguous
attribute names, the debugger interprets the names in this order: black, blue,
bright, blink. If you supply ambiguous area names, the debugger interprets
them in the order that they’re listed above (left to right, top to bottom).

Single-Step Ccstep

Syntax cstep [expression]

Menu selection Step=F8 (in C code)

Environments basic debugger profiling

Description The CSTEP single-steps through a program one C statement at a time,
updating the display after executing each statement. If you’re using CSTEP
to step through assembly language code, the debugger won’t update the
display until it has executed all assembly language statements associated with
a single C statement.

If you’re single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s –g debug
option). When function execution completes, single-step execution returns to
the caller. If the function wasn’t compiled with the debug option, the debugger
executes the function but doesn’t show single-step execution of the function.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional single-
step execution (Running code conditionally, page 6-14, discusses this in
detail).

dasm, disp Alphabetical Summary of Debugger Commands

 11-18

Display Disassembly at Specific Addressdasm

Syntax dasm address
dasm function name

Menu selection none

Environments basic debugger profiling

Description The DASM command displays code beginning at a specific point within the
DISASSEMBLY window.

Open DISP Windowdisp

Syntax disp expression [, display format]

Menu selection none

Environments basic debugger profiling

Description The DISP command opens a DISP window to display the contents of an array,
structure, or pointer expressions to a scalar type (of the form *pointer). If the
expression is not one of these types, then DISP acts like a ? command.

Once you open a DISP window, you may find that a displayed member is itself
an array, structure, or pointer:

A member that is an array looks like this [. . .]
A member that is a structure looks like this {. . .}
A member that is a pointer looks like an address 0x0000

You can display the additional data (the data pointed to or the members of the
array or structure) in another DISP window by using the DISP command again,
using the arrow keys to select the field and then pressing F9 , or pointing the
mouse cursor to the field and pressing the left mouse button. You can have up
to 120 DISP windows open at the same time.

 Alphabetical Summary of Debugger Commands disp

11-19 Summary of Commands and Special Keys

When you use the optional display format parameter, data is displayed in one
of the following formats:

Parameter Result Parameter Result

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal

The display format parameter can be used only when you are displaying a
scalar type, an array of scalar type, or an individual member of an aggregate
type.

You can also use the DISP command with a typecast expression to display
memory contents in any format. Here are some examples:

disp *0
disp *(float *)123
disp *(char *)0x111

This shows memory in the DISP window as an array of locations; the location
that you specify with the expression parameter is member [0], and all other
locations are offset from that location.

dlog Alphabetical Summary of Debugger Commands

 11-20

Record Display Windowdlog

Syntax dlog filename [,{a | w}]
or
dlog close

Menu selection none

Environments basic debugger profiling

Description The DLOG command allows you to record the information displayed in the
COMMAND window into a log file.

� To begin recording the information shown in the display area of the
COMMAND window, use:

dlog filename

Log files can be executed with the TAKE command. When you use DLOG
to record the information from the display area into a log file called file-
name, the debugger automatically precedes all error or progress
messages and command results with a semicolon to turn them into
comments. This way, you can easily reexecute the commands in your log
file by using the TAKE command.

� To end the recording session, enter:

dlog close

If necessary, you can write over existing log files or append additional informa-
tion to existing files. The optional parameters of the DLOG command control
how existing log files are used:

� Appending to an existing file. Use the a parameter to open an existing
file to which to append the information in the display area.

� Writing over an existing file. Use the w parameter to open an existing
file to write over the current contents of the file. Note that this is the default
action if you specify an existing filename without using either the a or w
options; you will lose the contents of an existing file if you don’t use the
append (a) option.

 Alphabetical Summary of Debugger Commands echo, else, endif, endloop

11-21 Summary of Commands and Special Keys

Echo String to Display Areaecho

Syntax echo string

Menu selection none

Environments basic debugger profiling

Description The ECHO command displays string in the display area of the COMMAND
window. You can’t use quote marks around the string, and any leading blanks
in your command string are removed when the ECHO command is executed.
You can execute the ECHO command only in a batch file.

Execute Alternative Commandselse

Description ELSE provides an alternative list of commands in the IF/ELSE/ENDIF
command sequence. See page 11-23 for more information about these
commands.

Terminate Conditional Sequenceendif

Description ENDIF identifies the end of a conditional-execution command sequence
begun with an IF command. See page 11-23 for more information about these
commands.

Terminate Looping Sequenceendloop

Description ENDLOOP identifies the end of the LOOP/ENDLOOP command sequence.
See page 11-24 for more information about the LOOP/ENDLOOP commands.

eval, file, fill Alphabetical Summary of Debugger Commands

 11-22

Evaluate Expressioneval

Syntax eval expression
e expression

Menu selection none

Environments basic debugger profiling

Description The EVAL command evaluates an expression like the ? command does but
does not show the result in the display area of the COMMAND window. EVAL
is useful for assigning values to registers or memory locations in a batch file
(where it’s not necessary to display the result).

Display Text Filefile

Syntax file filename

Menu selection L oad→File

Environments basic debugger profiling

Description The FILE command displays the contents of any text file in the FILE window.
The debugger continues to display this file until you run a program and halt in
a C function. This command is intended primarily for displaying C source code.
You can view only one text file at a time.

You are restricted to displaying files that are 65 518 bytes long or less.

Fill Memoryfill

Syntax fill address, length, data

Menu selection M emory→Fill

Environments basic debugger profiling

Description The FILL command fills a block of memory with a specified value.

� The address parameter identifies the first address in the block.
� The length parameter defines the number of words to fill.
� The data parameter is the value that is placed in each word in the block.

 Alphabetical Summary of Debugger Commands func, go, if/else/endif

11-23 Summary of Commands and Special Keys

Display Functionfunc

Syntax func function name
func address

Menu selection none

Environments basic debugger profiling

Description The FUNC command displays a specified C function in the FILE window. You
can identify the function by its name or its address. Note that FUNC works the
same way FILE works, but with FUNC you don’t need to identify the name of
the file that contains the function.

Run to Specified Addressgo

Syntax go [address]

Menu selection none

Environments basic debugger profiling

Description The GO command executes code up to a specific point in your program. If you
don’t supply an address, then GO acts like a RUN command without an
expression parameter.

Conditionally Execute Debugger Commandsif/else/endif

Syntax if expression
debugger commands
[else
debugger commands]
endif

Menu selection none

Environments basic debugger profiling

Description These commands allow you to execute debugger commands conditionally in
a batch file. If the expression if nonzero, the debugger executes the
commands between the IF and the ELSE or ENDIF. Note that the ELSE portion
of the command sequence is optional.

The conditional commands work with the following provisions:

� You can use conditional commands only in a batch file.
� You must enter each debugger command on a separate line in the file.
� You can’t nest conditional commands within the same batch file.

load, loop/endloop Alphabetical Summary of Debugger Commands

 11-24

Load Executable Object Fileload

Syntax load object filename

Menu selection L oad→ Load

Environments basic debugger profiling

Description The LOAD command loads both an object file and its associated symbol table
into memory. In effect, the LOAD command performs both a RELOAD and an
SLOAD. If you don’t supply an extension, the debugger looks for filename.out.
Note that the LOAD command clears the old symbol table and closes the
WATCH and DISP windows.

Loop Through Debugger Commandsloop/endloop

Syntax loop expression
debugger commands
endloop

Menu selection none

Environments basic debugger profiling

Description The LOOP/ENDLOOP commands allow you to set up a looping situation in a
batch file. These looping commands evaluate in the same method as in the run
conditional command expression:

� If you use an expression that is not Boolean, the debugger evaluates the
expression as a loop count.

� If you use a Boolean expression, the debugger executes the command
repeatedly as long as the expression is true.

The LOOP/ENDLOOP commands work under the following conditions:

� You can use LOOP/ENDLOOP commands only in a batch file.
� You must enter each debugger command on a separate line in the file.
� You can’t nest LOOP/ENDLOOP commands within the same file.

 Alphabetical Summary of Debugger Commands ma, map

11-25 Summary of Commands and Special Keys

Add Block to Memory Mapma

Syntax ma address, length, type

Menu selection M emory→Add

Environments basic debugger profiling

Description The MA command identifies valid ranges of target memory. Note that a new
memory map must not overlap an existing entry; if you define a range that over-
laps an existing range, the debugger ignores the new range.

� The address parameter defines the starting address of a range in memory.
This parameter can be an absolute address, any C expression, the name
of a C function, or an assembly language label.

� The length parameter defines the length of the range. This parameter can
be any C expression.

� The type parameter identifies the read/write characteristics of the memory
range. The type must be one of these keywords:

To identify this kind of memory,
Use this keyword as the type
parameter

Read-only memory R, ROM, or READONLY

Write-only memory W, WOM, or WRITEONLY

Read/write memory WR or RAM

No-access memory PROTECT

Input port INPORT or P|R

Output port OUTPORT or P|W

Input/output port IOPORT or P|R|W

Enable Memory Mappingmap

Syntax map {on | off }

Menu selection M emory→Enable

Environments basic debugger profiling

Description The MAP command enables or disables memory mapping. In some instances,
you may want to explicitly enable or disable memory. Note that disabling
memory mapping can cause bus fault problems in the target because the
debugger may attempt to access nonexistent memory.

md, mem Alphabetical Summary of Debugger Commands

 11-26

Delete Block From Memory Mapmd

Syntax md address

Menu selection M emory→Delete

Environments basic debugger profiling

Description The MD command deletes a range of memory from the debugger’s memory
map.

The address parameter identifies the starting address of the range of memory.
If you supply an address that is not the starting address of a range, the
debugger displays this error message in the display area of the COMMAND
window:

Specified map not found

Modify MEMORY Window Displaymem

Syntax mem expression [, [display format] [, window name]]

Menu selection none

Environments basic debugger profiling

Description The MEM command identifies a new starting address for the block of memory
displayed in the MEMORY window. The optional window name parameter
opens an additional MEMORY window, allowing you to view a separate block
of memory. The debugger displays the contents of memory at expression in
the first data position in the MEMORY window. The end of the range is defined
by the size of the window. The expression can be an absolute address, a
symbolic address, or any C expression.

When you use the optional display format parameter, memory is displayed in
one of the following formats:

Parameter Result Parameter Result

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal u Unsigned decimal

e Exponential floating point x Hexadecimal

f Decimal floating point

 Alphabetical Summary of Debugger Commands minimal, mix, ml

11-27 Summary of Commands and Special Keys

Enter Minimal Modeminimal

Syntax minimal

Menu selection MoDe→MiNimal

Environments basic debugger profiling

Description The MINIMAL command changes from the current debugging mode to
minimal mode. If you’re already in minimal mode, the MINIMAL command has
no effect.

Enter Mixed Modemix

Syntax mix

Menu selection MoDe→Mixed

Environments basic debugger profiling

Description The MIX command changes from the current debugging mode to mixed mode.
If you’re already in mixed mode, the MIX command has no effect.

List Memory Mapml

Syntax ml

Menu selection M emory→List

Environments basic debugger profiling

Description The ML command lists the memory ranges that are defined for the debugger’s
memory map. The ML command lists the starting address, ending address,
and read/write characteristics of each defined memory range.

move Alphabetical Summary of Debugger Commands

 11-28

Move Active Windowmove

Syntax move [X position, Y position [, width, length]]

Menu selection none

Environments basic debugger profiling

Description The MOVE command moves the active window to the specified XY position.
If you choose, you can resize the window while you move it (see the SIZE
command for valid width and length values). You can use the MOVE command
in one of two ways:

� By supplying a specific X position and Y position or

� By omitting the X position and Y position parameters and using function
keys to interactively move the window.

You can move a window by defining a new XY position for the window’s upper
left corner. Valid X and Y positions depend on the screen size and the window
size. X positions are valid if the X position plus the window width in characters
is less than or equal to the screen width in characters. Y positions are valid if
the Y position plus the window height is less than or equal to the screen height
in lines.

For example, if the window is 10 characters wide and 5 lines high and the
screen size is 80 x 25, the command move 70, 20 would put the lower right-
hand corner of the window in the lower right-hand corner of the screen. No X
value greater than 70 or Y value greater than 20 would be valid in this example.

If you enter the MOVE command without X position and Y position parameters,
you can use arrow keys to move the window.

↓ Moves the active window down one line
↑ Moves the active window up one line
← Moves the active window left one character position
→ Moves the active window right one character position

When you’re finished using the arrow keys, you must press or .

 Alphabetical Summary of Debugger Commands mr, ms, next

11-29 Summary of Commands and Special Keys

Reset Memory Mapmr

Syntax mr

Menu selection M emory→Reset

Environments basic debugger profiling

Description The MR command resets the debugger’s memory map by deleting all defined
memory ranges from the map.

Save Memory Block to Filems

Syntax ms address, length, filename

Menu selection M emory→Save

Environments basic debugger profiling

Description The MS command saves the values in a block of memory to a system file; files
are saved in COFF format.

� The address parameter identifies the first address in the block.

� The length parameter defines the length, in words, of the block. This
parameter can be any C expression.

� The filename is a system file. If you don’t supply an extension, the
debugger adds an .obj extension.

Single-Step, Next Statementnext

Syntax next [expression]

Menu selection Next=F10 (in disassembly)

Environments basic debugger profiling

Description The NEXT command is similar to the STEP command. If you’re in C code, the
debugger executes one C statement at a time. In assembly or mixed mode,
the debugger executes one assembly language statement at a time. Unlike
STEP, NEXT never updates the display when executing called functions;
NEXT always steps to the next consecutive statement. Unlike STEP, NEXT
steps over function calls rather than stepping into them—you don’t see the
single-step execution of the function call.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional single-
step execution (Running code conditionally, page 6-14, discusses this in
detail).

pause, pf Alphabetical Summary of Debugger Commands

 11-30

Pause Executionpause

Syntax pause

Menu selection none

Environments basic debugger profiling

Description The PAUSE command allows you to pause the debugger while running a batch
file. Pausing is especially helpful in debugging the commands in a batch file.

When the debugger reads this command in a batch file, the debugger stops
execution and displays the following message:

<< pause – type return >>

To continue processing, press .

Profile, Fullpf

Syntax pf starting point [, update rate]

Menu selection P rofile→Full

Environments basic debugger profiling

Description The PF command initiates a RUN and collects a full set of statistics on the
defined areas between the starting point and the first-encountered stopping
point. The starting point parameter can be a label, a function name, or a
memory address.

The optional update rate parameter determines how often the PROFILE
window will be updated. The update rate parameter can have one of these
values:

Value Description

0 This is the default. Statistics are not updated until the session is halted
(although you can force an update by clicking the mouse in the window
header). A “spinning wheel” character is shown to indicate that a profiling
session is in progress.

≥1 Statistics are updated during the session. A value of 1 means that data
is updated as often as possible.

<0 Statistics are not updated until the profiling session is halted, and the
“spinning wheel” character is not displayed.

 Alphabetical Summary of Debugger Commands pq, pr, prompt

11-31 Summary of Commands and Special Keys

Profile, Quickpq

Syntax pq starting point [, update rate]

Menu selection P rofile→Quick

Environments basic debugger profiling

Description The PQ command initiates a RUN command and collects a subset of the avail-
able statistics on the defined areas between the starting point and the first-en-
countered stopping point. PQ is similar to PF, except that PQ doesn’t collect
exclusive or exclusive max data.

The update rate parameter is the same as for the PF command.

Resume Profiling Sessionpr

Syntax pr [clear data [, update rate]]

Menu selection P rofile→Resume

Environments basic debugger profiling

Description The PR command resumes the last profiling session (initiated by PF or PQ),
starting from the current program counter.

The optional clear data parameter tells the debugger whether or not it should
clear out the previously collected data. The clear data parameter can have one
of these values:

Value Description

0 This is the default. The profiler will continue to collect data, adding it to
the existing data for the profiled areas, and to use the previous internal
profile stacks.

nonzero All previously collected profile data and internal profile stacks are
cleared.

The update rate parameter is the same as for the PF and PQ commands.

Change Command-Line Promptprompt

Syntax prompt new prompt

Menu selection C olor→Prompt

Environments basic debugger profiling

Description The PROMPT command changes the command-line prompt. The new prompt
can be any string of characters (note that a semicolon or comma ends the
string).

quit, reload, reset, restart Alphabetical Summary of Debugger Commands

 11-32

Exit Debuggerquit

Syntax quit

Menu selection none

Environments basic debugger profiling

Description The QUIT command exits the debugger and returns to the operating system.

Reload Object Codereload

Syntax reload [object filename]

Menu selection L oad→Reload

Environments basic debugger profiling

Description The RELOAD command loads only an object file without loading its
associated symbol table. This is useful for reloading a program when target
memory has been corrupted. If you enter the RELOAD command without
specifying a filename, the debugger reloads the file that you loaded last.

Reset Target Systemreset

Syntax reset

Menu selection L oad→ReseT

Environments basic debugger profiling

Description The RESET command resets the simulator and reloads the monitor. Note that
this is a software reset.

If you execute the RESET command, the simulator simulates the ’C6x
processor and peripheral reset operation, putting the processor in a known
state.

Reset PC to Program Entry Pointrestart

Syntax restart
rest

Menu selection L oad→REstart

Environments basic debugger profiling

Description The RESTART or REST command resets the program to its entry point. (This
assumes that you have already used one of the load commands to load a
program into memory.)

 Alphabetical Summary of Debugger Commands return, run, sa

11-33 Summary of Commands and Special Keys

Return to Function’s Callerreturn

Syntax return
ret

Menu selection none

Environments basic debugger profiling

Description The RETURN or RET command executes the code in the current C function
and halts when execution reaches the caller. Breakpoints do not affect this
command, but you can halt execution by pressing the left mouse button or
pressing ESC .

Run Coderun

Syntax run [expression]

Menu selection Run=F5

Environments basic debugger profiling

Description The RUN command is the basic command for running an entire program. The
command’s behavior depends on the type of parameter you supply:

� If you don’t supply an expression, the program executes until it encounters
a breakpoint or until you press the left mouse button or press ESC .

� If you supply a logical or relational expression, the run becomes
conditional (Running code conditionally, page 6-14, discusses this in
detail).

� If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger executes count instructions,
halts, and updates the display.

Add Stopping Pointsa

Syntax sa address

Menu selection S top-points→Add

Environments basic debugger profiling

Description The SA command adds a stopping point at address. The address can be a
label, a function name, or a memory address.

safehalt, scolor Alphabetical Summary of Debugger Commands

 11-34

Toggle Safehalt Modesafehalt

Syntax safehalt {on | off }

Menu selection none

Environments basic debugger profiling

Description The SAFEHALT command places the debugger in safehalt mode. When safe-
halt mode is off (the default), you can halt a running target device either by
pressing ESC or by clicking a mouse button. When safehalt mode is on, you
can halt a running target device only by pressing ESC ; mouse clicks are
ignored.

Change Screen Colorsscolor

Syntax scolor area name, attribute1 [, attribute2 [, attribute3 [, attribute4]]]

Menu selection C olor→Config

Environments basic debugger profiling

Description The SCOLOR command changes the color of specified areas of the debugger
display and updates the display immediately. The area name parameter identi-
fies the area of the display that is affected. The attributes identify how the area
is affected. The first two attribute parameters usually specify the foreground
and background colors for the area. If you do not supply a background color,
the debugger uses black as the background.

Valid values for the attribute parameters include:

black blue green cyan

red magenta yellow white

bright blink

Valid values for the area name parameters include:

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

 Alphabetical Summary of Debugger Commands scolor, sconfig, sd

11-35 Summary of Commands and Special Keys

You don’t have to type an entire attribute or area name; you need to type only
enough letters to uniquely identify the attribute. If you supply ambiguous
attribute names, the debugger interprets the names in this order: black, blue,
bright, blink. If you supply ambiguous area names, the debugger interprets
them in the order that they’re listed above (left to right, top to bottom).

Load Screen Configurationsconfig

Syntax sconfig [filename]

Menu selection C olor→Load

Environments basic debugger profiling

Description The SCONFIG command restores the display to a specified configuration.
This restores the screen colors, window positions, window sizes, and border
styles that were saved with the SSAVE command into filename. If you don’t
supply a filename, the debugger looks for init.clr. The debugger searches for
the specified file in the current directory and then in directories named with the
D_DIR environment variable.

When you use SCONFIG to restore a configuration that includes multiple
WATCH or MEMORY windows, the additional windows are not launched auto-
matically. However, when you launch an additional window using the same
name as before you saved the configuration, the window is placed in the
correct location.

Delete Stopping Pointsd

Syntax sd address

Menu selection S top-points→Delete

Environments basic debugger profiling

Description The SD command deletes the stopping point at address.

setf Alphabetical Summary of Debugger Commands

 11-36

Set Default Data-Display Formatsetf

Syntax setf [data type, display format]

Menu selection none

Environments basic debugger profiling

Description The SETF command changes the display format for a specific data type. If you
enter SETF with no parameters, the debugger lists the current display format
for each data type.

� The data type parameter can be any of the following C data types:

char short uint ulong double
uchar int long float ptr

� The display format parameter can be any of the following characters:

Parameter Result Parameter Result

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal

Only a subset of the display formats can be used for each data type. Listed
below are the valid combinations of data types and display formats.

Valid Display Formats Valid Display Formats

Data
Type c d o x e f p s u

Data
Type c d o x e f p s u

char (c) √ √ √ √ √ long (d) √ √ √ √ √

uchar (d) √ √ √ √ √ ulong (d) √ √ √ √ √

short (d) √ √ √ √ √ float (e) √ √ √ √

int (d) √ √ √ √ √ double (e) √ √ √ √

uint (d) √ √ √ √ √ ptr (p) √ √ √ √

To return all data types to their default display format, enter:

setf *

 Alphabetical Summary of Debugger Commands size, sl

11-37 Summary of Commands and Special Keys

Size Active Windowsize

Syntax size [width, length]

Menu selection none

Environments basic debugger profiling

Description The SIZE command changes the size of the active window. You can use the
SIZE command in one of two ways:

� By supplying a specific width and length or

� By omitting the width and length parameters and using function keys to
interactively resize the window.

Valid values for the width and length depend on the screen size and the
window position on the screen. If the window is in the upper left corner of the
screen, the maximum size of the window is the same as the screen size minus
one line. (The extra line is needed for the menu bar.) For example, if the screen
size is 80 characters by 25 lines, the largest window size is 80 characters by
24 lines.

If a window is in the middle of the display, you can’t size it to the maximum
height and width—you can size it only to the right and bottom screen borders.
The easiest way to make a window as large as possible is to zoom it, see
Zooming a window on page 3-26.

If you enter the SIZE command without width and length parameters, you can
use arrow keys to size the window.

↓ Makes the active window one line longer
↑ Makes the active window one line shorter
← Makes the active window one character narrower
→ Makes the active window one character wider

When you’re finished using the arrow keys, you must press or .

List Stopping Pointsl

Syntax sl

Menu selection S top-points→List

Environments basic debugger profiling

Description The SL command lists all of the currently set stopping points.

sload, sound, sr Alphabetical Summary of Debugger Commands

 11-38

Load Symbol Tablesload

Syntax sload object filename

Menu selection L oad→Symbols

Environments basic debugger profiling

Description The SLOAD command loads the symbol table of the specified object file.
SLOAD is useful in a debugging environment in which the debugger cannot,
or need not, load the object code (for example, if the code is in ROM). SLOAD
clears the existing symbol table before loading the new one but does not
modify memory or set the program entry point. Note that SLOAD closes the
WATCH and DISP windows.

Enable Error Beepingsound

Syntax sound {on | off }

Menu selection none

Environments basic debugger profiling

Description You can cause a beep to sound every time a debugger error message is
displayed. This is useful if the COMMAND window is hidden (because you
wouldn’t see the error message). By default, sound is off.

Reset Stopping Pointsr

Syntax sr

Menu selection S top-points→Reset

Environments basic debugger profiling

Description The SR command resets (deletes) all currently set stopping points.

 Alphabetical Summary of Debugger Commands ssave, step

11-39 Summary of Commands and Special Keys

Save Screen Configurationssave

Syntax ssave [filename]

Menu selection C olor→Save

Environments basic debugger profiling

Description The SSAVE command saves the current screen configuration to a file. This
saves the screen colors, window positions, window sizes, and border styles.
SSAVE also saves the location of multiple WATCH and MEMORY windows.
The filename parameter names the new screen configuration file. You can
include path information (including relative pathnames); if you don’t supply
path information, the debugger places the file in the current directory. If you
don’t supply a filename, the debugger saves the current configuration into a
file named init.clr and places the file in the current directory.

Single-Stepstep

Syntax step [expression]

Menu selection Step=F8 (in disassembly)

Environments basic debugger profiling

Description The STEP command single-steps through assembly language or C code. If
you’re in C code, the debugger executes one C statement at a time. In
assembly or mixed mode, the debugger executes one assembly language
statement at a time.

If you’re single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s –g debug
option). When function execution completes, single-step execution returns to
the caller. If the function wasn’t compiled with the debug option, the debugger
executes the function but doesn’t show single-step execution of the function.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional single-
step execution (Running code conditionally, page 6-14, discusses this in
detail).

take, unalias Alphabetical Summary of Debugger Commands

 11-40

Execute Batch Filetake

Syntax take batch filename [, suppress echo flag]

Menu selection none

Environments basic debugger profiling

Description The TAKE command tells the debugger to read and execute commands from
a batch file. The batch filename parameter identifies the file that contains
commands. If you don’t supply a pathname as part of the filename, the debug-
ger first looks in the current directory and then searches directories named
with the D_DIR environment variable.

By default, the debugger echoes the commands to the display area of the
COMMAND window and updates the display as it reads the commands from
the batch file. For the debugger, you can change this behavior:

� If you don’t use the suppress echo flag parameter, or if you use it but supply
a nonzero value, then the debugger behaves in the default manner.

� If you would like to suppress the echoing and updating, use the value 0 for
the suppress echo flag parameter.

Delete Alias Definitionunalias

Syntax unalias alias name
unalias *

Menu selection none

Environments basic debugger profiling

Description The UNALIAS command deletes defined aliases.

� To delete a single alias , enter the UNALIAS command with an alias name.
For example, to delete an alias named NEWMAP, enter:

unalias NEWMAP

� To delete all aliases , enter an asterisk instead of an alias name:

unalias *

Note that the * symbol does not work as a wildcard.

 Alphabetical Summary of Debugger Commands use, vaa, vac, version

11-41 Summary of Commands and Special Keys

Use New Directoryuse

Syntax use [directory name]

Menu selection none

Environments basic debugger profiling

Description The USE command allows you to name an additional directory that the
debugger can search when looking for source files. You can specify only one
directory at a time.

If you enter the USE command without specifying a directory name, the
debugger lists all of the current directories.

Save All Profile Data to a Filevaa

Syntax vaa filename

Menu selection V iew→Save→All views

Environments basic debugger profiling

Description The VAA command saves all statistics collected during the current profiling
session. The data is stored in a system file.

Save Displayed Profile Data to a Filevac

Syntax vac filename

Menu selection V iew→Save→Current view

Environments basic debugger profiling

Description The VAC command saves all statistics currently displayed in the PROFILE
window. (Statistics that aren’t displayed aren’t saved.) The data is stored in a
system file.

Display the Current Debugger Versionversion

Syntax version

Menu selection none

Environments basic debugger profiling

Description The VERSION command displays the debugger’s copyright date and the
current version number of the debugger, silicon, etc.

vr, wa Alphabetical Summary of Debugger Commands

 11-42

Reset PROFILE Window Displayvr

Syntax vr

Menu selection V iew→Reset

Environments basic debugger profiling

Description The VR command resets the display in the PROFILE window so that all
marked areas are listed and statistics are displayed with default labels and in
the default sort order.

Add Item to WATCH Windowwa

Syntax wa expression [,[label] [, [display format] [, window name]]]

Menu selection W atch→Add

Environments basic debugger profiling

Description The WA command displays the value of expression in a WATCH window. If a
WATCH window isn’t open, executing WA opens a WATCH window. The
expression parameter can be any C expression, including an expression that
has side effects.

WA is most useful for watching an expression whose value changes over time;
constant expressions serve no useful function in the watch window. The label
parameter is optional. When used, it provides a label for the watched entry. If
you don’t use a label, the debugger displays the expression in the label field.

When you use the optional display format parameter, data is displayed in one
of the following formats:

Parameter Result Parameter Result

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal

If you want to use a display format parameter without a label parameter, just
insert an extra comma. For example:

wa PC,,d

 Alphabetical Summary of Debugger Commands wa, wd, whatis

11-43 Summary of Commands and Special Keys

You can open additional WATCH windows by using the window name parame-
ter. When you open an additional WATCH window, the debugger appends the
window name to the WATCH window label. You can create as many WATCH
windows as you need.

If you omit the window name parameter, the debugger displays the expression
in the default WATCH window (labeled WATCH).

Delete Item From WATCH Windowwd

Syntax wd index number [, window name]

Menu selection W atch→Delete

Environments basic debugger profiling

Description The WD command deletes a specific item from the WATCH window. The WD
command’s index number parameter must correspond to one of the watch
indexes listed in the WATCH window. The optional window name parameter
is used to specify a particular WATCH window.

Find Data Typewhatis

Syntax whatis symbol

Menu selection none

Environments basic debugger profiling

Description The WHATIS command shows the data type of symbol in the display area of
the COMMAND window. The symbol can be any variable (local, global, or
static), a function name, structure tag, typedef name, or enumeration constant.

win, wr Alphabetical Summary of Debugger Commands

 11-44

Select Active Windowwin

Syntax win WINDOW NAME

Menu selection none

Environments basic debugger profiling

Description The WIN command allows you to select the active window by name. Note that
the WINDOW NAME is in uppercase (matching the name exactly as
displayed). You can spell out the entire window name, but you really need to
specify only enough letters to identify the window.

If several windows of the same type are visible on the screen, don’t use the
WIN command to select one of them. If you supply an ambiguous name (such
as C, which could stand for CPU or CALLS), the debugger selects the first
window it finds whose name matches the name you supplied. If the debugger
doesn’t find the window you asked for (because you closed the window or
misspelled the name), then the WIN command has no effect.

Close WATCH Windowwr

Syntax wr [{* | window name}]

Menu selection W atch→Reset

Environments basic debugger profiling

Description The WR command deletes all items from a WATCH window and closes the
window.

� To close the default WATCH window, enter:

wr

� To close one of the additional WATCH windows, use this syntax:

wr windowname

� To close all WATCH windows, enter:

wr *

 Alphabetical Summary of Debugger Commands zoom

11-45 Summary of Commands and Special Keys

Zoom Active Windowzoom

Syntax zoom

Menu selection none

Environments basic debugger profiling

Description The ZOOM command makes the active window as large as possible. To
unzoom a window, enter the ZOOM command a second time; this returns the
window to its prezoom size and position.

Summary of Profiling Commands

 11-46

11.4 Summary of Profiling Commands

The following tables summarize the profiling commands that are used for
marking, enabling, disabling, and unmarking areas and for changing the
display in the PROFILE window. These commands are easiest to use from the
pulldown menus, so they are not included in the alphabetical command
summary. The syntaxes for these commands are provided here so that you
can include them in batch files.

Table 11–1. Marking Areas

To mark this area C only Disassembly only

Lines

� By line number, address

� All lines in a function

MCLE filename, line number

MCLF function

MALE address

MALF function

Ranges

� By line numbers MCRE filename, line number, line number MARE address, address

Functions

� By function name

� All functions in a module

� All functions everywhere

MCFE function

MCFM filename

MCFG

not applicable

Table 11–2. Disabling Marked Areas

To disable this area C only Disassembly only C and disassembly

Lines

� By line number, address

� All lines in a function

� All lines in a module

� All lines everywhere

DCLE filename, line number

DCLF function

DCLM filename

DCLG

DALE address

DALF function

DALM filename

DALG

not applicable

DBLF function

DBLM filename

DBLG

Ranges

� By line numbers, addresses

� All ranges in a function

� All ranges in a module

� All ranges everywhere

DCRE filename, line number

DCRF function

DCRM filename

DCRG

DARE address

DARF function

DARM filename

DARG

not applicable

DBRF function

DBRM filename

DBRG

 Summary of Profiling Commands

11-47 Summary of Commands and Special Keys

Table 11–2. Disabling Marked Areas (Continued)

To disable this area C only Disassembly only C and disassembly

Functions

� By function name

� All functions in a module

� All functions everywhere

DCFE function

DCFM filename

DCFG

not applicable not applicable

DBFM filename

DBFG

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

DCAF function

DCAM filename

DCAG

DAAF function

DAAM filename

DAAG

DBAF function

DBAM filename

DBAG

Table 11–3. Enabling Disabled Areas

To enable this area C only Disassembly only C and disassembly

Lines

� By line number, address

� All lines in a function

� All lines in a module

� All lines everywhere

ECLE filename, line number

ECLF function

ECLM filename

ECLG

EALE address

EALF function

EALM filename

EALG

not applicable

EBLF function

EBLM filename

EBLG

Ranges

� By line numbers, addresses

� All ranges in a function

� All ranges in a module

� All ranges everywhere

ECRE filename, line number

ECRF function

ECRM filename

ECRG

EARE address

EARF function

EARM filename

EARG

not applicable

EBRF function

EBRM filename

EBRG

Functions

� By function name

� All functions in a module

� All functions everywhere

ECFE function

ECFM filename

ECFG

not applicable not applicable

EBFM filename

EBFG

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

ECAF function

ECAM filename

ECAG

EAAF function

EAAM filename

EAAG

EBAF function

EBAM filename

EBAG

Summary of Profiling Commands

 11-48

Table 11–4. Unmarking Areas

To unmark this area C only Disassembly only C and disassembly

Lines

� By line number, address

� All lines in a function

� All lines in a module

� All lines everywhere

UCLE filename, line number

UCLF function

UCLM filename

UCLG

UALE address

UALF function

UALM filename

UALG

not applicable

UBLF function

UBLM filename

UBLG

Ranges

� By line numbers, addresses

� All ranges in a function

� All ranges in a module

� All ranges everywhere

UCRE filename, line number

UCRF function

UCRM filename

UCRG

UARE address

UARF function

UARM filename

UARG

not applicable

UBRF function

UBRM filename

UBRG

Functions

� By function name

� All functions in a module

� All functions everywhere

UCFE function

UCFM filename

UCFG

not applicable not applicable

UBFM filename

UBFG

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

UCAF function

UCAM filename

UCAG

UAAF function

UAAM filename

UAAG

UBAF function

UBAM filename

UBAG

 Summary of Profiling Commands

11-49 Summary of Commands and Special Keys

Table 11–5. Changing the PROFILE Window Display

(a) Viewing specific areas

To view this area C only Disassembly only C and disassembly

Lines

� By line number, address

� All lines in a function

� All lines in a module

� All lines everywhere

VFCLE filename, line number

VFCLF function

VFCLM filename

VFCLG

VFALE address

VFALF function

VFALM filename

VFALG

not applicable

VFBLF function

VFBLM filename

VFBLG

Ranges

� By line numbers, addresses

� All ranges in a function

� All ranges in a module

� All ranges everywhere

VFCRE filename, line number

VFCRF function

VFCRM filename

VFCRG

VFARE address

VFARF function

VFARM filename

VFARG

not applicable

VFBRF function

VFBRM filename

VFBRG

Functions

� By function name

� All functions in a module

� All functions everywhere

VFCFE function

VFCFM filename

VFCFG

not applicable not applicable

VFBFM filename

VFBFG

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

VFCAF function

VFCAM filename

VFCAG

VFAAF function

VFAAM filename

VFAAG

VFBAF function

VFBAM filename

VFBAG

(b) Viewing different data (c) Sorting the data

To view this information Use this
command

To sort on this data Use this
command

Count VDC Count VSC

Inclusive VDI Inclusive VSI

Inclusive, maximum VDN Inclusive, maximum VSN

Exclusive VDE Exclusive VSE

Exclusive, maximum VDX Exclusive, maximum VSX

Address VDA Address VSA

All VDL Data VSD

Summary of Special Keys

 11-50

11.5 Summary of Special Keys

The debugger provides function key, cursor key, and command key
sequences for performing a variety of actions:

� Editing text on the command line
� Using the command history
� Switching modes
� Halting or escaping from an action
� Displaying the pulldown menus
� Running code
� Selecting or closing a window
� Moving or sizing a window
� Scrolling through a window’s contents
� Editing data or selecting the active field

Editing text on the command line

To do this
Use these
function keys

Move back over text without erasing characters CONTROL H

or
BACK SPACE

Move forward through text without erasing characters CONTROL L

Move back over text while erasing characters DELETE

Move forward through text while erasing characters SPACE

Insert text into the characters that are already on the command INSERT

line

Using the command history

To do this
Use these
function keys

Repeat the last command that you entered F2

Move backward, one command at a time, through the command TAB

history

Move forward, one command at a time, through the command SHIFT TAB

history

 Summary of Special Keys

11-51 Summary of Commands and Special Keys

Switching modes

To do this
Use these
function keys

Switch debugging modes in this order: F3

auto assembly mixed

Halting or escaping from an action

The escape key acts as an end or undo key in several situations.

To do this
Use this
function key

Halt program execution ESC

Close a pulldown menu

Undo an edit of the active field in a data-display window
(pressing this key leaves the field unchanged)

Halt the display of a long list of data in the display area of
the COMMAND window

Displaying pulldown menus

To do this
Use these
function keys

Display the Load menu ALT L

Display the Break menu ALT B

Display the Watch menu ALT W

Display the Memory menu ALT M

Display the Color menu ALT C

Display the MoDe menu ALT D

Display an adjacent menu ← or →

Execute any of the choices from a displayed pulldown menu Press the high-
lighted letter
corresponding
to your choice

Summary of Special Keys

 11-52

Running code

To do this
Use these
function keys

Run code from the current PC (equivalent to the RUN command F5

without an expression parameter)

Single-step code from the current PC (equivalent to the STEP F8

command without an expression parameter)

Single-step code from the current PC; step over function calls F10

(equivalent to the NEXT command without an expression
parameter)

Selecting or closing a window

To do this
Use these
function keys

Select the active window (pressing this key makes each window F6

active in turn; stop pressing the key when the desired window
becomes active)

Close the CALLS, WATCH, DISP, or additional MEMORY window F4

(the window must be active before you can close it)

Moving or sizing a window

You can use the arrow keys to interactively move a window after entering the
MOVE or SIZE command without parameters.

To do this
Use these
function keys

Move the window down one line ↓

Make the window one line longer

Move the window up one line ↑

Make the window one line shorter

Move the window left one character position ←

Make the window one character narrower

Move the window right one character position →

Make the window one character wider

 Summary of Special Keys

11-53 Summary of Commands and Special Keys

Scrolling a window’s contents

These descriptions and instructions for scrolling apply to the active window.
Some of these descriptions refer to specific windows; if no specific window is
named, then the description/instructions refer to any window that is active.

To do this
Use these
function keys

Scroll up through the window contents, one window length at PAGE UP

a time

Scroll down through the window contents, one window length PAGE DOWN

at a time

Move the field cursor up, one line at a time ↑

Move the field cursor down, one line at a time ↓

� FILE window only: Scroll left eight characters at a time ←

� Other windows: Move the field cursor left one field; at the
first field on a line, wrap back to the last fully displayed field
on the previous line

� FILE window only: Scroll right eight characters at a time →

� Other windows: Move the field cursor right one field; at the
last field on a line, wrap around to the first field on the next
line

FILE window only: Adjust the window’s contents so that the first HOME

line of the text file is at the top of the window

FILE window only: Adjust the window’s contents so that the last END

line of the text file is at the bottom of the window

DISP windows only: Scroll up through an array of structures CONTROL

PAGE UP

DISP windows only: Scroll down through an array of structures CONTROL

PAGE DOWN

Summary of Special Keys

 11-54

Editing data or selecting the active field

The F9 function key makes the current field (the field that the cursor is pointing
to) active. This has various effects, depending on the field.

To do this
Use this
function key

FILE or DISASSEMBLY window: Set or clear a breakpoint F9

CALLS window: Display the source to a listed function

Any data-display window: Edit the contents of the current field

DISP window: Open an additional DISP window to display a
member that is an array, structure, or pointer

12-1Basic Information About C Expressions

Basic Information
About C Expressions

Many of the debugger commands take C expressions as parameters. This
allows the debugger to have a relatively small, yet powerful, instruction set.
Because C expressions can have side effects—that is, the evaluation of some
types of expressions can affect existing values—you can use the same com-
mand to display or to change a value. This reduces the number of commands
in the command set.

This chapter contains basic information that you’ll need to know in order to use
C expressions as debugger command parameters.

Topic Page

12.1 C Expressions for Assembly Language Programmers 12-2.

12.2 Using Expression Analysis in the Debugger 12-4.

Chapter 12

C Expressions for Assembly Language Programmers

 12-2

12.1 C Expressions for Assembly Language Programmers

It’s not necessary for you to be an experienced C programmer in order to use
the debugger. However, in order to use the debugger’s full capabilities, you
should be familiar with the rules governing C expressions. You should obtain
a copy of The C Programming Language (first or second edition) by Brian W.
Kernighan and Dennis M. Ritchie, published by Prentice-Hall, Englewood
Cliffs, New Jersey. This book is referred to in the C community, and in Texas
Instruments documentation, as K&R.

Note:

A single value or symbol is a legal C expression.

K&R contains a complete description of C expressions; to get you started,
here’s a summary of the operators that you can use in expression parameters.

� Reference operators

–> indirect structure reference . direct structure reference

[] array reference * indirection (unary)

& address (unary)

� Arithmetic operators

+ addition (binary) – subtraction (binary)

* multiplication / division

% modulo – negation (unary)

(type) typecast

� Relational and logical operators

> greater than >= greater than or equal to

< less than <= less than or equal to

== is equal to != is not equal to

&& logical AND || logical OR

! logical NOT (unary)

C Expressions for Assembly Language Programmers

12-3Basic Information About C Expressions

� Increment and decrement operators

++ increment – – decrement

These unary operators can precede or follow a symbol. When the operator
precedes a symbol, the symbol value is incremented/decremented before
it is used in the expression; when the operator follows a symbol, the sym-
bol value is incremented/decremented after it is used in the expression.
Because these operators affect the symbol’s final value, they have side
effects.

� Bitwise operators

& bitwise AND | bitwise OR

^ bitwise exclusive-OR << left shift

>> right shift ~ 1s complement (unary)

� Assignment operators

= assignment += assignment with addition

–= assignment with subtrac-
tion

/= assignment with division

%= assignment with modulo &= assignment with bitwise
AND

^= assignment with bitwise
XOR

|= assignment with bitwise OR

<<= assignment with left shift >>= assignment with right shift

*= assignment with multiplica-
tion

These operators support a shorthand version of the familiar binary expres-
sions; for example, X = X + Y can be written in C as X += Y. Because these
operators affect a symbol’s final value, they have side effects.

Using Expression Analysis in the Debugger

 12-4

12.2 Using Expression Analysis in the Debugger

The debugger’s expression analysis is based on C expression analysis. This
includes all mathematical, relational, pointer, and assignment operators.
However, a few limitations, as well as a few additional features, are not
described in K&R C.

Restrictions

The following restrictions apply to the debugger’s expression analysis
features.

� The sizeof operator is not supported.

� The comma operator (,) is not supported (commas are used to separate
parameter values for the debugger commands).

� Function calls and string constants are currently not supported in expres-
sions.

� The debugger supports a limited capability of type casts; the following
forms are allowed:

(basic type)
(basic type * ...)
([structure/union/enum] structure/union/enum tag)
([structure/union/enum] structure/union/enum tag * ...)

Note that you can use up to six * s in a cast.

Additional features

� All floating-point operations are performed in double precision using stan-
dard widening. (This is transparent.) Floats are represented in IEEE floa-
ting-point format.

� All registers can be referenced by name. The TMS320C6x’s auxiliary reg-
isters are treated as integers and/or pointers.

� Void expressions are legal (treated like integers).

� The specification of variables and functions can be qualified with context
information. Local variables (including local statics) can be referenced
with the expression form:

function name.local name

Using Expression Analysis in the Debugger

12-5Basic Information About C Expressions

This expression format is useful for examining the automatic variables of a
function that is not currently being executed. Unless the variable is static,
however, the function must be somewhere in the current call stack. Note
that if you want to see local variables from the currently executing function,
you need not use this form; you can simply specify the variable name (just
as in your C source).

File-scoped variables (such as statics or functions) can be referenced with
the following expression form:

filename.function name
or filename.variable name

This expression format is useful for accessing a file-scoped static variable
(or function) that may share its name with variables in other files.

Note that in this expression, filename does not include the file extension;
the debugger searches the object symbol table for any source filename
that matches the input name, disregarding any extension. Thus, if the vari-
able ABC is in file source.c, you can specify it as source.ABC.

Note that these expression forms can be combined into an expression of
the form:

filename.function name.variable name

� Any integral or void expression can be treated as a pointer and used with
the indirection operator (*). Here are several examples of valid use of a
pointer in an expression:

*123
*AR5
*(AR2 + 123)
*(I*J)

By default, the values are treated as integers (that is, these expressions
point to integer values).

� Any expression can be typecast to a pointer to a specific type (overriding
the default of pointing to an integer, as described above).

Hint: You can use casting with the WA and DISP commands to display
data in a desired format.

For example, the expression:

*(float *)10

treats 10 as a pointer to a floating-point value at location 10 in memory. In
this case, the debugger fetches the contents of memory location 10 and
treats the contents as a floating-point value. If you use this expression as a
parameter for the DISP command, the debugger displays memory con-
tents as an array of floating-point values within the DISP window, begin-
ning with memory location 10 as array member [0].

Using Expression Analysis in the Debugger

 12-6

Note how the first expression differs from the expression:

(float)*10

In this case, the debugger fetches an integer from address 10 and con-
verts the integer to a floating-point value.

You can also typecast to user-defined types such as structures. For exam-
ple, in the expression:

((struct STR *)10)–>field

the debugger treats memory location 10 as a pointer to a structure of type
STR (assuming that a structure is at address 10) and accesses a field from
that structure.

 What the Debugger Does During Invocation

A-1 What the Debugger Does During Invocation

Appendix A

What the Debugger Does
During Invocation

In some circumstances, you may find it helpful to know the steps that the
debugger goes through during the invocation process. These are the steps,
in order, that the debugger performs. (For more information on the environ-
ment variables mentioned below, refer to your installation guide.)

The debugger:

1) Reads options from the command line.

2) Reads any information specified with the D_OPTIONS environment vari-
able.

3) Reads information from the D_DIR and D_SRC environment variables.

4) Looks for the init.clr screen configuration file.

(The debugger searches for the screen configuration file in directories
named with D_DIR.)

5) Initializes the debugger screen and windows but initially displays only the
COMMAND window.

6) Finds the batch file that defines your memory map by searching in directo-
ries named with D_DIR. The debugger expects this file to set up the
memory map and follows these steps to look for the batch file:

� When you invoke the debugger, it checks to see if you’ve used the –t
debugger option. If it finds the –t option, the debugger reads and
executes the specified file.

� If you have not used the –t option, the debugger looks for the default
initialization batch file.

If the debugger finds the file, it reads and executes the file.

If the debugger does not find the –t option or the initialization batch file, it
looks for a file called init.cmd.

Appendix A

What the Debugger Does During Invocation

A-2

7) Loads any object filenames specified with D_OPTIONS or specified on the
command line during invocation.

8) Determines the initial mode (auto, assembly, mixed, or minimal) and dis-
plays the appropriate windows on the screen.

At this point, the debugger is ready to process any commands that you enter.

 Running Title—Attribute Reference

B-1 Chapter Title—Attribute Reference

Appendix A

Debugger Messages

This appendix contains an alphabetical listing of the progress and error mes-
sages that the debugger might display in the display area of the COMMAND
window. Each message contains both a description of the situation that causes
the message and an action to take if the message indicates a problem or error.

Topic Page

B.1 Associating Sound With Error Messages B-2.

B.2 Alphabetical Summary of Debugger Messages B-2.

B.3 Additional Instructions for Expression Errors B-17.

Appendix B

Associating Sound With Error Messages / Alphabetical Summary of Debugger Messages

B-2

B.1 Associating Sound With Error Messages

You can associate a beeping sound with the display of error messages. To do
this, use the SOUND command. The format for this command is:

sound {on | off }

By default, no beep is associated with error messages (SOUND OFF). The
beep is helpful if the COMMAND window is hidden behind other windows.

B.2 Alphabetical Summary of Debugger Messages

Symbol

‘]’ expected

Description This is an expression error—it means that the parameter
contained an opening bracket symbol “[” but didn’t contain a
closing bracket symbol “]”.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

‘)’ expected

Description This is an expression error—it means that the parameter
contained an opening parenthesis symbol “(” but didn’t con-
tain a closing parenthesis symbol “)”.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

A

Aborted by user

Description The debugger halted a long COMMAND display listing (from
WHATIS, DIR, ML, or BL) because you pressed the ESC key.

Action None required; this is normal debugger behavior.

Associating Sound With Error Messages / Alphabetical Summary of Debugger Messages

 Alphabetic Summary of Debugger Messages

B-3 Debugger Messages

B

Breakpoint already exists at address

Description During single-step execution, the debugger attempted to set
a breakpoint where one already existed. (This isn’t neces-
sarily a breakpoint that you set—it may have been an internal
breakpoint that was used for single-stepping).

Action None should be required; you may want to reset the program
entry point (RESTART) and reenter the single-step com-
mand.

Breakpoint table full

Description 200 breakpoints are already set, and there was an attempt to
set another. The maximum limit of 200 breakpoints includes
internal breakpoints that the debugger may set for
single-stepping. Under normal conditions, this should not be
a problem; it is rarely necessary to set this many breakpoints.

Action Enter a BL command to see where breakpoints are set in your
program. Use the BR command to delete all software break-
points, or use the BD command to delete individual software
breakpoints.

C

Cannot allocate host memory

Description This is a fatal error—it means that the debugger is running out
of memory.

Action You might try invoking the debugger with the –v option so that
fewer symbols may be loaded. Or you might want to relink
your program and link in fewer modules at a time.

Cannot allocate system memory

Description This is a fatal error—it means that the debugger is running out
of memory.

Action You might try invoking the debugger with the –v option so that
fewer symbols may be loaded. Or you might want to relink
your program and link in fewer modules at a time.

Alphabetical Summary of Debugger Messages

B-4

Cannot edit field

Description Expressions that are displayed in the WATCH window cannot
be edited.

Action If you attempted to edit an expression in the WATCH window,
you may have actually wanted to change the value of a sym-
bol or register used in the expression. Use the ? or EVAL
command to edit the actual symbol or register. The expres-
sion value will automatically be updated.

Cannot find/open initialization file

Description The debugger can’t find the init.cmd file.

Action Be sure that init.cmd is in the appropriate directory. If it isn’t,
copy it from the debugger product diskette. If the file is already
in the correct directory, verify that the D_DIR environment
variable is set up to identify the directory. See Setting Up the
Debugger Environment in the appropriate installation guide.

Cannot halt the processor

Description This is a fatal error—for some reason, pressing ESC didn’t
halt program execution.

Action Exit the debugger. Invoke the autoexec or initdb.bat file; then
invoke the debugger again.

Cannot map into reserved memory: ?

Description The debugger tried to access unconfigured/reserved/nonex-
istent memory.

Action Remap the reserved memory accesses.

Cannot open config file

Description The SCONFIG command can’t find the screen-customization
file that you specified.

Action Be sure that the filename was typed correctly. If it wasn’t,
reenter the command with the correct name. If it was, reenter
the command and specify full path information with the
filename.

 Alphabetical Summary of Debugger Messages

B-5 Debugger Messages

Cannot open “ filename”
Description The debugger attempted to show filename in the FILE win-

dow but could not find the file.

Action Be sure that the file exists as named. If it does, enter the USE
command to identify the file’s directory.

Cannot open object file: “ filename”
Description The file specified with the LOAD, SLOAD, or RELOAD

command is not an object file that the debugger can load.

Action Be sure that you’re loading an actual object file. Be sure that
the file was linked (you may want to run the cl6x shell program
again to create an executable object file).

Cannot open new window
Description A maximum of 127 windows can be open at once. The last

request to open a window would have made 128, which isn’t
possible.

Action Close any unnecessary windows. Windows that can be
closed include WATCH, CALLS, DISP, and additional
MEMORY windows. To close the WATCH window, enter WD.
To close any of these windows, make the desired window ac-
tive and press F4 .

Cannot read processor status
Description This is a fatal error—for some reason, pressing ESC didn’t

halt program execution.

Action Exit the debugger. Invoke the autoexec or initdb.bat file, then
invoke the debugger again.

Cannot reset the processor
Description This is a fatal error—for some reason, pressing ESC didn’t

halt program execution.

Action Exit the debugger. Invoke the autoexec or initdb.bat file, then
invoke the debugger again.

Cannot restart processor
Description If a program doesn’t have an entry point, then RESTART

won’t reset the PC to the program entry point.

Action Don’t use RESTART if your program doesn’t have an explicit
entry point.

Alphabetical Summary of Debugger Messages

B-6

Cannot set/verify breakpoint at address

Description Either you attempted to set a breakpoint in read-only or
protected memory, or there are hardware problems with the
target system. This may also happen when you enable or dis-
able on-chip memory while using breakpoints.

Action Check your memory map.

Cannot take address of register

Description This is an expression error. C does not allow you to take the
address of a register.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

Command “ cmd” not found

Description The debugger didn’t recognize the command that you typed.

Action Reenter the correct command. Refer to Chapter 11, Sum-
mary of Commands and Special Keys.

Conflicting map range

Description A block of memory specified with the MA command overlaps
an existing memory map entry. Blocks cannot overlap.

Action Use the ML command to list the existing memory map; this will
help you find that existing block that the new block would
overlap. If the existing block is not necessary, delete it with the
MD command and reenter the MA command. If the existing
block is necessary, reenter the MA command with parame-
ters that will not overlap the existing block.

 Alphabetical Summary of Debugger Messages

B-7 Debugger Messages

Corrupt call stack

Description The debugger tried to update the CALLS window and
couldn’t. This may be because a function was called that
didn’t return. Or it could be that the program stack was over-
written in target memory. Another reason you may have this
message is that you are debugging code that has optimiza-
tion enabled (for example, you did not use the –g compile
switch); if this is the case, ignore this message—code execu-
tion is not affected.

Action If your program called a function that didn’t return, then this is
normal behavior (as long as you intended for the function not
to return). Otherwise, you may be overwriting program
memory.

E

Error in expression

Description This is an expression error.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

F

File does not exist

Description The port file could not be opened for reading.

Action Be sure that the file exists as named. If it does, enter the USE
command to identify the file’s directory.

File not found

Description The filename specified for the FILE command was not found
in the current directory or any of the directories identified with
D_SRC.

Action Be sure that the filename was typed correctly. If it was, reenter
the FILE command and specify full path information with the
filename.

Alphabetical Summary of Debugger Messages

B-8

File not found : “ filename”

Description The filename specified for the LOAD, RELOAD, SLOAD, or
TAKE command was not found in the current directory or any
of the directories identified with D_SRC.

Action Be sure that the filename was typed correctly. If it was, reenter
the command and specify full path information with the
filename.

File too large (filename)

Description You attempted to load a file that was more than 65 518 bytes
long.

Action Try loading the file without the symbol table (SLOAD), or use
lnk6x to relink the program with fewer modules.

Float not allowed

Description This is an expression error—a floating-point value was used
incorrectly.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

Function required

Description The parameter for the FUNC command must be the name of a
function in the program that is loaded.

Action Reenter the FUNC command with a valid function name.

I

Illegal addressing mode

Description An illegal ’C6x addressing mode was encountered.

Action Refer to the TMS320C62xx CPU and Instruction Set Refer-
ence Guide for valid addressing modes.

Illegal cast

Description This is an expression error—the expression parameter uses
a cast that doesn’t meet the C language rules for casts.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

 Alphabetical Summary of Debugger Messages

B-9 Debugger Messages

Illegal control transfer instruction

Description The instruction following a delayed branch/call instruction
was modifying the program counter.

Action Modify your source code.

Illegal left hand side of assignment

Description This is an expression error—the lefthand side of an assign-
ment expression doesn’t meet C language assignment rules.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

Illegal memory access

Description Your program tried to access unmapped memory.

Action Modify your source code.

Illegal opcode

Description An invalid ’C6x instruction was encountered.

Action Modify your source code.

Illegal operand of &

Description This is an expression error—the expression attempts to take
the address of an item that doesn’t have an address.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

Illegal pointer math

Description This is an expression error—some types of pointer math are
not valid in C expressions.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

Illegal pointer subtraction

Description This is an expression error—the expression attempts to use
pointers in a way that is not valid.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

Alphabetical Summary of Debugger Messages

B-10

Illegal structure reference
Description This is an expression error—either the item being referenced

as a structure is not a structure, or you are attempting to refer-
ence a nonexistent portion of a structure.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

Illegal use of structures
Description This is an expression error—the expression parameter is not

using structures according to the C language rules.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

Illegal use of void expression
Description This is an expression error—the expression parameter does

not meet the C language rules.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

Integer not allowed
Description This is an expression error—the command did not accept an

integer as a parameter.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

Invalid address
––– Memory access outside valid range: address

Description The debugger attempted to access memory at address,
which is outside the memory map.

Action Check your memory map to be sure that you access valid
memory.

Invalid argument
Description One of the command parameters does not meet the require-

ments for the command.

Action Reenter the command with valid parameters. Refer to the
appropriate command description in Chapter 11, Sum-
mary of Commands and Special Keys.

 Alphabetical Summary of Debugger Messages

B-11 Debugger Messages

Invalid attribute name
Description The COLOR and SCOLOR commands accept a specific set

of area names for their first parameter. The parameter
entered did not match one of the valid attributes.

Action Reenter the COLOR or SCOLOR command with a valid area
name parameter. Valid area names are listed in Table 9–2
(page 9-3).

Invalid color name
Description The COLOR and SCOLOR commands accept a specific set

of color attributes as parameters. The parameter entered did
not match one of the valid attributes.

Action Reenter the COLOR or SCOLOR command with a valid color
parameter. Valid color attributes are listed in Table 9–1 (page
9-2).

Invalid memory attribute
Description The third parameter of the MA command specifies the type, or

attribute, of the block of memory that MA adds to the memory
map. The parameter entered did not match one of the valid
attributes.

Action Reenter the MA command. Use one of the following valid
parameters to identify the memory type:

R, ROM (read-only memory)
W, WOM (write-only memory)
R|W, RAM (read/write memory)
PROTECT (no-access memory)

OUTPORT, P|W (output port)
INPORT, P|R (input port)
IOPORT, P|R|W (input/output port)

Invalid object file
Description Either the file specified with the LOAD, SLOAD, or RELOAD

command is not an object file that the debugger can load, or it
has been corrupted.

Action Be sure that you’re loading an actual object file. Be sure that
the file was linked (you may want to run cl6x again to create an
executable object file). If the file you attempted to load was a
valid executable object file, then it was probably corrupted; re-
compile, assemble, and link with cl6x.

Alphabetical Summary of Debugger Messages

B-12

Invalid watch delete

Description The debugger can’t delete the parameter supplied with the
WD command. Usually, this is because the watch index
doesn’t exist or because a symbol name was typed instead of
a watch index.

Action Reenter the WD command. Be sure to specify the watch
index that matches the item you’d like to delete (this is the
number in the left column of the WATCH window). Remem-
ber, you can’t delete items symbolically—you must delete
them by number.

Invalid window position

Description The debugger can’t move the active window to the XY posi-
tion specified with the MOVE command. Either the XY param-
eters are not within the screen limits, or the active window
may be too large to move to the desired position.

Action You can use the mouse to move the window.

� If you don’t have a mouse, enter the MOVE command
without parameters; then use the arrow keys to move the
window. When you’re finished, you must press ESC or

.

� If you prefer to use the MOVE command with parameters,
the minimum XY position is 0,1; the maximum position
depends on which screen size you’re using.

Invalid window size

Description The width and length specified with the SIZE or MOVE com-
mand may be too large or too small. If valid width and length
were specified, then the active window is already at the far
right or bottom of the screen and so cannot be made larger.

Action You can use the mouse to size the window.

� If you don’t have a mouse, enter the SIZE command with-
out parameters; then use the arrow keys to move the win-
dow. When you’re finished, you must press ESC or .

� If you prefer to use the SIZE command with parameters,
the minimum size is 4 by 3; the maximum size depends
on which screen size you’re using.

 Alphabetic Summary of Debugger Messages

B-13 Debugger Messages

L

Load aborted

Description This message always follows another message.

Action Refer to the message that preceded Load aborted.

Lval required

Description This is an expression error—an assignment expression was
entered that requires a legal left-hand side.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

M

Memory map table full

Description Too many blocks have been added to the memory map. This
will rarely happen unless blocks are added word by word
(which is inadvisable).

Action Stop adding blocks to the memory map. Consolidate any
adjacent blocks that have the same memory attributes.

N

Name “ name” not found

Description The command cannot find the object named name.

Action If name is a symbol, be sure that it was typed correctly. If it
wasn’t, reenter the command with the correct name. If it was,
then be sure that the associated object file is loaded.

Non-repeatable instruction

Description The instruction following the RPT instruction is not a repeat-
able instruction.

Action Modify your code.

Alphabetical Summary of Debugger Messages

B-14

P

Pointer not allowed

Description This is an expression error.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

Processor is already running

Description One of the RUN commands was entered while the debugger
was running free from the target system.

Action Enter the HALT command to stop the free run, then reenter
the desired RUN command.

S

Specified map not found

Description The MD command was entered with an address or block that
is not in the memory map.

Action Use the ML command to verify the current memory map.
When using MD, you can specify only the first address of a
defined block.

Structure member not found

Description This is an expression error—an expression references a non-
existent structure member.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

Structure member name required

Description This is an expression error—a symbol name followed by a
period but no member name.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

 Alphabetical Summary of Debugger Messages

B-15 Debugger Messages

Structure not allowed

Description This is an expression error—the expression is attempting an
operation that cannot be performed on a structure.

Action See Section B.3, Additional Instructions for Expression Errors,
page B-17.

T

Take file stack too deep

Description Batch files can be nested up to 10 levels deep. Batch files can
call other batch files, which can call other batch files, and so
on. Apparently, the batch file that you are TAKEing calls batch
files that are nested more than 10 levels deep.

Action Edit the batch file that caused the error. Instead of calling
another batch file from within the offending file, you may want
to copy the contents of the second file into the first. This will
remove a level of nesting.

Too many breakpoints

Description 200 breakpoints are already set, and there was an attempt to
set another. Note that the maximum limit of 200 breakpoints
includes internal breakpoints that the debugger may set for
single-stepping. Under normal conditions, this should not be
a problem; it is rarely necessary to set this many breakpoints.

Action Enter a BL command to see where breakpoints are set in your
program. Use the BR command to delete all software break-
points or use the BD command to delete individual software
breakpoints.

Too many paths

Description More than 20 paths have been specified cumulatively with the
USE command, D_SRC environment variable, and –i debug-
ger option.

Action Don’t enter the USE command before entering another com-
mand that has a filename parameter. Instead, enter the sec-
ond command and specify full path information for the file-
name.

Alphabetic Summary of Debugger Messages

B-16

U

Undeclared port address

Description You attempted to do a connect/disconnect on an address that
isn’t declared as a port.

Action Verify the address of the port to be connected or discon-
nected.

User halt

Description The debugger halted program execution because you
pressed the ESC key.

Action None required; this is normal debugger behavior.

W

Window not found

Description The parameter supplied for the WIN command is not a valid
window name.

Action Reenter the WIN command. Remember that window names
must be typed in uppercase letters. Here are the valid window
names; the bold letters show the smallest acceptable abbre-
viations:

CALLS CPU DISP

COMMAND DISASSEMBLY FILE

MEMORY PROFILE WATCH

Write not allowed for port

Description You attempted to connect a file for output operation to an
address that is not configured for write.

Action Either change the ’C6x software to write a port that is config-
ured for write, or change the attributes of the port.

 Additional Instructions for Expression Errors

B-17 Debugger Messages

B.3 Additional Instructions for Expression Errors

Whenever you receive an expression error, you should reenter the command
and edit the expression so that it follows the C language expression rules. If
necessary, refer to a C language manual such as The C Programming
Language by Brian W. Kernighan and Dennis M. Ritchie.

B-18

 Glossary

C-1 Glossary

Appendix A

Glossary

A
active window: The window that is currently selected for moving, sizing,

editing, closing, or some other function.

aggregate type: A C data type, such as a structure or array, in which a vari-
able is composed of multiple variables, called members.

aliasing: A method of customizing debugger commands; aliasing provides
a shorthand method for entering often-used command strings.

ANSI C: A version of the C programming language that conforms to the C
standards defined by the American National Standards Institute.

assembly mode: A debugging mode that shows assembly language code
in the DISASSEMBLY window and doesn’t show the FILE window, no
matter what type of code is currently running.

autoexec.bat: A batch file that contains DOS commands for initializing your
PC.

auto mode: A context-sensitive debugging mode that automatically
switches between showing assembly language code in the
DISASSEMBLY window and C code in the FILE window, depending on
what type of code is currently running.

B
batch file: One of two different types of files. One type contains DOS com-

mands for the PC to execute. A second type of batch file contains debug-
ger commands for the debugger to execute. The PC doesn’t execute
debugger batch files, and the debugger doesn’t execute PC batch files.

benchmarking: A type of program execution that allows you to track the
number of CPU cycles consumed by a specific section of code.

breakpoint: A point within your program where execution will halt because
of a previous request from you.

Appendix C

Glossary

C-2

C

C: A high-level, general-purpose programming language useful for writing
compilers and operating systems and for programming microproces-
sors.

CALLS window: A window that lists the functions called by your program.

casting: A feature of C expressions that allows you to use one type of data
as if it were a different type of data.

children: Additional windows opened for aggregate types that are members
of a parent aggregate type displayed in an existing DISP window.

cl6x: A shell utility that invokes the TMS320C6x compiler, assembler, and
linker to create an executable object file version of your program.

click: To press and release a mouse button without moving the mouse.

code-display windows: Windows that show code, text files, or code-
specific information. This category includes the DISASSEMBLY, FILES,
and CALLS windows.

COFF: Common Object File Format. An implementation of the object file
format of the same name developed by AT&T. The TMS320 fixed-point
DSP compiler, assembler, and linker use and generate COFF files.

command line: The portion of the COMMAND window where you can enter
commands.

command-line cursor: A block-shaped cursor that identifies the current
character position on the command line.

COMMAND window: A window that provides an area for you to enter com-
mands and for the debugger to echo command entry, show command
output, and list progress or error messages.

CPU window: A window that displays the contents of ’C6x on-chip registers,
including the program counter, status register, A-file registers, and B-file
registers.

current-field cursor: A screen icon that identifies the current field in the ac-
tive window.

cursor: An icon on the screen (such as a rectangle or a horizontal line) that
is used as a pointing device. The cursor is usually under mouse or
keyboard control.

 Glossary

C-3 Glossary

D

data-display windows: Windows for observing and modifying various
types of data. This category includes the MEMORY, CPU, DISP, and
WATCH windows.

D_DIR: An environment variable that identifies the directory containing the
commands and files necessary for running the debugger.

debugger: A window-oriented software interface that helps you to debug
’C6x programs running on a ’C6x simulator.

disassembly: Assembly language code formed from the reverse-assembly
of the contents of memory.

DISASSEMBLY window: A window that displays the disassembly of
memory contents.

discontinuity: A state in which the addresses fetched by the debugger be-
come nonsequential as a result of instructions that load the PC with new
values, such as branches, calls, and returns.

DISP window: A window that displays the members of an aggregate data
type.

display area: The portion of the COMMAND window where the debugger
echoes command entry, shows command output, and lists progress or
error messages.

D_OPTIONS: An environment variable that you can use for identifying often-
used debugger options.

drag: To move the mouse while pressing one of the mouse buttons.

D_SRC: An environment variable that identifies directories containing
program source files.

E

EGA: Enhanced Graphics Adaptor. An industry standard for video cards.

EISA: Extended Industry Standard Architecture. A standard for PC buses.

environment variable: A special system symbol that the debugger uses for
finding directories or obtaining debugger options.

Glossary

C-4

F
FILE window: A window that displays the contents of the current C code.

The FILE window is intended primarily for displaying C code but can be
used to display any text file.

I
init.cmd: A batch file that contains debugger-initialization commands. If this

file isn’t present when you first invoke the debugger, then all memory is
invalid.

ISA: Industry Standard Architecture. A subset of the EISA standard.

M
memory map: A map of memory space that tells the debugger which areas

of memory can and can’t be accessed.

MEMORY window: A window that displays the contents of memory.

menu bar: A row of pulldown menu selections found at the top of the debug-
ger display.

minimal mode: A debugging mode that displays the COMMAND window,
WATCH window, and DISP window only.

mixed mode: A debugging mode that simultaneously shows both assembly
language code in the DISASSEMBLY window and C code in the FILE
window.

mouse cursor: A block-shaped cursor that tracks mouse movements over
the entire display.

P
PC: Personal computer or program counter, depending on the context and

where it’s used in this book: 1) In installation instructions or information
relating to hardware and boards, PC means personal computer (as in
IBM PC). 2) In general debugger and program-related information, PC
means program counter, which is the register that identifies the current
statement in your program.

point: To move the mouse cursor until it overlays the desired object on the
screen.

 Glossary

C-5 Glossary

pulldown menu: A command menu that is accessed by name or with the
mouse from the menu bar at the top of the debugger display.

S

scalar type: A C type in which the variable is a single variable, not composed
of other variables.

scrolling: A method of moving the contents of a window up, down, left, or
right to view contents that weren’t originally shown.

side effects: A feature of C expressions in which using an assignment
operator in an expression affects the value of one of the components
used in the expression.

simulator: A development tool that simulates the operation of the ’C6x and
lets you execute and debug applications programs by using the ’C6x de-
bugger.

single-step: A form of program execution that allows you to see the effects
of each statement. The program is executed statement by statement; the
debugger pauses after each statement to update the data-display
windows.

symbol table: A file that contains the names of all variables and functions
in your ’C6x program.

V

VGA: Video Graphics Array. An industry standard for video cards.

W

WATCH window: A window that displays the values of selected expres-
sions, symbols, addresses, and registers.

window: A defined rectangular area of virtual space on the display.

C-6

 Index

Index-1

Index

? command 7-3, 11-10
display formats 2-27, 7-19, 11-10
examining register contents 7-10
modifying PC 6-11
side effects 7-5

$$SIM$$ 4-15

A
absolute addresses 7-7, 8-3
active window 3-21 to 3-23

breakpoints 8-3
current field 2-6, 3-20
customizing its appearance 9-4
default appearance 3-21
definition C-1
effects on command entry 4-3
identifying 2-6, 3-21
moving 2-9, 3-27 to 3-32, 11-28 to 11-29
selecting 2-5 to 2-6, 3-22 to 3-32, 11-44

function key method 2-6, 3-22, 11-52
mouse method 2-6, 3-22
WIN command 2-5 to 2-6, 3-22, 11-44

sizing 2-7, 3-24 to 3-32, 11-37
zooming 2-8, 3-26 to 3-32, 11-45

ADDR command 6-5, 6-7, 11-11
effect on DISASSEMBLY window 3-8
effect on FILE window 3-9
finding current PC 6-10

addresses
absolute addresses 7-7, 8-3
accessible locations 5-1, 5-2
contents of (indirection) 7-8, 7-15
hexadecimal notation 7-7
in MEMORY window 2-5, 3-13, 7-7
invalid memory 5-3
nonexistent memory locations 5-2
pointers in DISP window 2-23
protected areas 5-3, 5-8

addresses (continued)
symbolic addresses 7-7
undefined areas 5-3, 5-8

aggregate types
definition C-1
displaying 2-22, 3-17, 7-11 to 7-13

ALIAS command 2-30, 4-17 to 4-20, 11-12
See also aliasing
supplying parameters 4-17

aliasing 4-17 to 4-20
ALIAS command 2-30, 4-17 to 4-20, 11-12
definition C-1
deleting aliases 4-18
finding alias definitions 4-18
limitations 4-19
listing aliases 4-18
redefining an alias 4-18

ANSI C 1-8
definition C-1

area names (for customizing the display)
code-display windows 9-5
COMMAND window 9-4
common display areas 9-3
data-display windows 9-6
menus 9-7
summary of valid names 9-3 to 9-7
window borders 9-4

arithmetic operators 12-2
arrays

displaying/modifying contents 7-11
format in DISP window 2-24, 7-12, 11-18
member operators 12-2

arrow keys
COMMAND window 7-5
editing 7-4
moving a window 2-9, 3-28, 11-52
moving to adjacent menus 4-9
scrolling 2-10, 3-30, 11-53
sizing a window 2-7, 3-25, 11-52

Index

Index-2

–as shell option 1-10, 1-11, 10-2

ASM command 2-14, 6-3, 11-12
menu selection 6-3, 11-9

assembler 1-9, 1-10

assembly language code, displaying 3-2 to 3-3,
3-4, 6-4

assembly mode 2-12 to 2-14, 3-4, 6-2
ASM command 2-14, 6-3, 11-12
definition C-1
selection 6-3

assignment operators 7-5, 12-3

attributes 9-2

auto mode 2-12 to 2-14, 3-2 to 3-3, 6-2
C command 2-14, 6-3, 11-15
definition C-1
selection 6-3

auxiliary registers 7-10

B
–b debugger option 1-13

effect on window positions 3-28
effect on window sizes 3-25

BA command 8-3, 11-13
menu selection 11-8

background 9-3

batch files 4-13
controlling command execution 4-14 to 4-16

conditional commands 4-14 to 4-20, 11-23
looping commands 4-15 to 4-20, 11-24

definition C-1
displaying 6-7
displaying text when executing 4-14, 11-21
echoing messages 4-14, 11-21
execution 11-40
halting execution 4-13
init.clr 9-9, A-1
init.cmd 5-2, A-1

definition C-4
initialization 5-2 to 5-10, A-1

init.cmd 5-2, A-1
siminit.cmd A-1

mem.map 5-10
memory maps 5-10
mono.clr 9-9
siminit.cmd A-1
TAKE command 4-13, 5-10, 11-40

–bb debugger option 2-3
See also –b debugger option

BD command 8-4, 11-13
menu selection 11-8

benchmarking, definition C-1
bitwise operators 12-3
BL command 8-5, 11-13

menu selection 11-8
blanks 9-3
BORDER command 9-8, 11-14

menu selection 11-9
borders

colors 9-4
styles 9-8

BR command 8-4, 11-14
menu selection 11-8

breakpoints (software) 8-1 to 8-5
active window 2-6
adding 8-2 to 8-3, 11-13

command method 8-3
function key method 8-3, 11-54
mouse method 8-3

clearing 8-4, 11-13, 11-14
command method 8-4
function key method 8-4, 11-54
mouse method 8-4

commands 11-4
BA command 8-3, 11-13
BD command 8-4, 11-13
BL command 8-5, 11-13
BR command 8-4, 11-14
menu selections 11-8

definition C-1
listing set breakpoints 8-5, 11-13
restrictions 8-2
setting 2-16 to 2-17, 8-2 to 8-3

command method 8-3
function key method 8-3, 11-54
mouse method 8-3

.bss section, clearing 1-13

C
C command 2-14, 6-3, 11-15

menu selection 6-3, 11-9
–c debugger option 1-13
C expressions 7-5, 12-1 to 12-6

See also expressions
C language, definition C-2

 Index

Index-3

C source
displaying 2-11, 3-2 to 3-3, 3-4, 6-4, 11-22
managing memory data 7-8

CALLS command 3-10, 3-11, 6-7, 11-15
effect on debugging modes 3-5

CALLS window 2-12, 3-6, 3-10 to 3-32, 6-2, 6-7
closing 3-11, 3-32, 11-52
definition C-2
opening 3-11, 11-15

casting 2-25 to 2-30, 7-8, 12-4
definition C-2

CHDIR (CD) command 2-22

children
See also DISP window, children
definition C-2

cl60 shell 1-11
definition C-2

clearing the display area 2-22, 4-5, 11-15

“click and type” editing 2-28, 3-31, 7-4 to 7-20

clicking, definition C-2

closing
a window 3-32
CALLS window 3-11, 11-52
debugger 1-15, 2-30, 11-32
DISP window 2-24, 7-13, 11-52
log files 4-6, 11-20
MEMORY window 3-15
WATCH window 2-21, 7-16, 11-44

CLS command 2-22, 4-5, 11-15

CNEXT command 6-13, 11-16

code, debugging 1-16

code-display windows 3-6, 6-2
CALLS window 2-12, 3-6, 3-10 to 3-32, 6-2, 6-7
definition C-2
DISASSEMBLY window 2-5, 3-6, 3-8, 6-2, 6-4
effect of debugging modes 6-2
FILE window 3-6, 3-9, 6-2, 6-4, 6-6

code-execution (run) commands. See run com-
mands

COFF
definition C-2
loading 5-3

COLOR command 9-2, 11-16 to 11-17

color.clr 9-9

colors 9-2 to 9-7
area names 9-3 to 9-7

comma operator 12-4

command history 4-5
function key summary 11-50

command line 3-7, 4-2
changing the prompt 9-12, 11-31
cursor 3-20

customizing its appearance 9-4, 9-12
definition C-2
editing 4-3

function key summary 11-50

COMMAND window 3-6, 3-7, 4-2
colors 9-4
command line 2-4, 3-7, 4-2

editing keys 11-50
customizing 9-4
definition C-2
display area 2-4, 3-7, 4-2

clearing 11-15
recording information from the display area 4-6,

11-20

commands
alphabetical summary 11-10 to 11-45
batch files 4-13

controlling command execution
conditional commands 4-14 to 4-20, 11-23
looping commands 4-15 to 4-20, 11-24

breakpoint commands 8-1 to 8-5, 11-4
code-execution (run) commands 6-10, 11-6
command line 4-2 to 4-6
command strings 4-17 to 4-20
conditional commands 4-14, 11-23
customizing 4-17 to 4-20
data-management commands 7-2 to 7-20, 11-3
entering and using 4-1 to 4-19
file-display commands 6-4 to 6-7, 11-5
load commands 6-8, 11-5
looping commands 4-15, 11-24
memory commands 5-5 to 5-10
memory-map commands 11-5
menu selections 4-7
mode commands 6-2 to 6-3, 11-3
profiling commands 11-7
screen-customization commands 9-1 to 9-12,

11-5
system commands 11-4
window commands 11-3

compiler 1-8, 1-10
key characteristics 1-8

conditional commands 4-14 to 4-20, 11-23

Index

Index-4

CPU window 3-6, 3-16, 7-2, 7-10
colors 9-6
customizing 9-6
definition C-2
editing registers 7-4

CSTEP command 2-19, 6-13, 11-17

current directory, changing 6-9

current field
cursor 3-20
dialog box 4-4
editing 7-4 to 7-20

current PC 3-8
finding 6-10
selecting 6-10

cursors 3-20
command-line cursor 3-20

definition C-2
current-field cursor 3-20

definition C-2
definition C-2
mouse cursor 3-20

definition C-4

customizing the display 9-1 to 9-12
changing the prompt 9-12
colors 9-2 to 9-7
loading a custom display 9-10, 11-35
saving a custom display 9-10, 11-39
window border styles 9-8

D
–d debugger option 1-13

D_DIR environment variable 9-10, 11-35
definition C-3
effects on debugger invocation A-1

D_OPTIONS environment variable
definition C-3
effects on debugger invocation A-1, A-2
ignoring 1-15

D_SRC environment variable 1-12, 6-9
definition C-3
effects on debugger invocation A-1

DASM command 6-5, 11-18
effect on debugging modes 3-5
effect on DISASSEMBLY window 3-8
finding current PC 6-10

data, in MEMORY window 3-13

data-display windows 3-6, 7-2
colors 9-6
CPU window 3-6, 3-16, 7-2, 7-10
definition C-3
DISP window 2-22, 3-6, 3-17, 7-2, 7-11 to 7-13
MEMORY window 2-5, 3-6, 3-13 to 3-32, 7-2,

7-6 to 7-9
WATCH window 2-18 to 2-19, 3-6, 3-18, 7-2,

7-14 to 7-16

data formats 7-17
data types 7-18

data-management commands 2-23, 7-2, 11-3
? command 6-11, 7-3, 7-10, 11-10
controlling data format 2-25 to 2-30, 7-8
data-format control 7-17 to 7-20
DISP command 2-22 to 2-30, 7-11, 11-18 to

11-22
EVAL command 6-11, 7-3, 11-22
FILL command 7-9, 11-22
MEM command 2-5, 3-14, 3-15, 7-6, 11-26 to

11-27
MS command 7-9, 11-29
SETF command 2-26 to 2-30, 7-17 to 7-20,

11-36 to 11-37
side effects 7-5
WA command 2-18 to 2-19, 4-11, 7-10, 7-15,

11-42 to 11-43
WD command 2-20, 7-16, 11-43
WHATIS command 2-21, 7-2, 11-43
WR command 2-21, 7-16, 11-44

data memory
adding to memory map 11-25
deleting from memory map 11-26
filling 7-9, 11-22
saving 7-9, 11-29

data types 7-18
See also display formats

debugger
definition C-3
description 1-2 to 1-4
display 2-4

basic 1-2
exiting 1-15, 11-32
invocation 1-12 to 1-15, 2-3

options 1-12 to 1-15
task ordering A-1 to A-2

key features 1-3 to 1-4
messages B-1 to B-17
pausing 11-30

 Index

Index-5

debugging modes 2-12 to 2-14, 3-2 to 3-5, 6-2 to
6-3
assembly mode 2-12 to 2-14, 3-4, 6-2
auto mode 2-12 to 2-14, 3-2 to 3-3, 6-2
commands 11-3

ASM command 2-14, 6-3, 11-12
C command 2-14, 6-3, 11-15
menu selections 11-9
MINIMAL command 2-14, 6-3, 11-27
MIX command 2-14, 6-3, 11-27

default mode 3-2, 6-2
menu selections 2-12 to 2-14, 6-3
minimal mode 2-12 to 2-14, 3-5, 6-2
mixed mode 2-12 to 2-14, 3-4, 6-2
restrictions 3-5
selection 2-12 to 2-14

command method 2-14, 6-3
function key method 6-3, 11-51
mouse method 2-13, 6-3

decrement operator 12-3

default
data formats 7-17
debugging mode 3-2, 6-2
display 2-4, 3-2, 6-2, 9-11
memory map 2-29, 5-4
screen configuration file 9-9

monochrome displays 9-9

defining areas for profiling 10-5 to 10-12
disabling areas 10-7 to 10-22
enabling areas 10-10 to 10-22
marking areas 10-5 to 10-22
restrictions 10-12 to 10-22
unmarking areas 10-11 to 10-22

dialog boxes 4-11 to 4-12
effect on entering other commands 4-4
entering parameters 4-11 to 4-13
modifying text in 4-12
using 4-11 to 4-12

DIR command 2-22

directories
identifying additional source directories 11-41

USE command 11-41
identifying current directory 6-9
search algorithm 4-13, 6-9, A-1 to A-2

disabling areas 10-7 to 10-22

disassembly, definition C-3

DISASSEMBLY window 2-5, 3-6, 3-8, 6-2, 6-4
colors 9-5
customizing 9-5
definition C-3
modifying display 11-18

discontinuity, definition C-3

DISP command 2-22, 3-17, 7-11, 11-18 to 11-22
display formats 2-27, 7-19, 11-19
effect on debugging modes 3-5

DISP window 2-22, 3-6, 3-17, 7-2, 7-11 to 7-13
children 2-23, 7-12

closing 2-24
definition C-2

closing 2-24, 3-32, 7-13, 11-52
colors 9-6
customizing 9-6
definition C-3
editing elements 7-4
effects of LOAD command 7-13
effects of SLOAD command 7-13
identifying arrays, structures, pointers 11-18
opening 7-11
opening another DISP window 7-12

DISP command 7-12
function key method 2-24, 7-12, 11-54
mouse method 2-23, 7-12

display area 3-7, 4-2
clearing 2-22, 4-5, 11-15
definition C-3
recording information from 4-6, 11-20

display formats 2-25 to 2-30, 7-17 to 7-20
? command 2-27, 7-19, 11-10
casting 2-25
data types 7-18
DISP command 2-25, 2-27, 7-19, 11-19
enumerated types 3-17
floating-point values 3-17
integers 3-17
MEM command 2-27, 7-19, 11-26
pointers 3-17
resetting types 7-18
SETF command 2-26 to 2-30, 7-17 to 7-20,

11-36 to 11-37
WA command 2-26 to 2-30, 7-19, 11-42

displaying
assembly language code 6-4
batch files 6-7
C code 6-6 to 6-16
data in nondefault formats 7-17 to 7-20

Index

Index-6

displaying (continued)
source programs 6-4 to 6-7
text files 6-7
text when executing a batch file 4-14, 11-21

DLOG command 4-6 to 4-20, 11-20
ending recording session 4-6
starting recording session 4-6

dragging, definition C-3

E
E command 11-22

See also EVAL command

ECHO command 4-14, 11-21

“edit” key (F9) 3-31, 7-4, 11-54
See also F9 key

editing
“click and type” method 2-28, 3-31, 7-4 to 7-20
command line 4-3, 11-50
data values 7-4, 11-54
dialog boxes 4-11 to 4-12
expression side effects 7-5
FILE, DISASSEMBLY, CALLS 3-31
function key method 2-28, 7-4 to 7-20, 11-54
MEMORY, CPU, DISP, WATCH 3-31
mouse method 7-4
overwrite method 7-4 to 7-20
window contents 3-31

EGA, definition C-3

EISA, definition C-3

ELSE command 4-14 to 4-20, 11-21
See also IF/ELSE/ENDIF commands
debugger version 11-23

enabling areas 10-10 to 10-22

end key, scrolling 3-30, 11-53

ENDIF command 4-14 to 4-20, 11-21
See also IF/ELSE/ENDIF commands
debugger version 11-23

ENDLOOP command 4-15 to 4-20, 11-21
See also LOOP/ENDLOOP commands
debugger version 11-24

entering commands
from menu selections 4-7 to 4-10
on the command line 4-2 to 4-6

entry point 6-10

enumerated types, display format 3-17

environment variables
D_DIR 9-10, 11-35

effects on debugger invocation A-1
D_OPTIONS 1-15

effects on debugger invocation A-1, A-2
D_SRC 1-12, 6-9

effects on debugger invocation A-1
definition C-3

error messages B-1 to B-17
beeping 11-38, B-2

EVAL command 7-3, 11-22
modifying PC 6-11
side effects 7-5

executing code 2-12, 6-10 to 6-14
See also run commands
conditionally 2-20 to 2-30, 6-14
function key method 11-52
halting execution 2-16, 6-15
program entry point 2-16 to 2-17, 6-10 to 6-14
single stepping 2-19, 11-16, 11-17, 11-29, 11-39
while disconnected from the target system 6-14

executing commands 4-3

execution, pausing 11-30

exiting the debugger 1-15, 2-30, 11-32

expressions 12-1 to 12-6
addresses 7-7
evaluation

with ? command 7-3, 11-10
with DISP command 11-18 to 11-22
with EVAL command 7-3, 11-22
with LOOP command 4-15, 11-24

expression analysis 12-4 to 12-6
operators 12-2 to 12-3
restrictions 12-4
side effects 7-5
void expressions 12-4

extensions 1-11

F
F2 key 4-5, 11-50

F3 key 6-3, 11-51

F4 key 2-22, 2-24, 3-11, 3-15, 3-32, 7-13, 11-52

F5 key 4-10, 6-11, 11-8, 11-52

F6 key 2-6, 3-22, 7-4, 11-52

F8 key 4-10, 6-13, 11-8, 11-52

 Index

Index-7

F9 key 2-24, 2-28, 3-8, 3-9, 3-10, 3-11, 3-31, 6-7,
7-4, 7-12, 8-3, 8-4
clearing a breakpoint 11-54
displaying a function 11-54
editing data 11-54
opening a DISP window 11-54
setting a breakpoint 11-54

F10 key 4-10, 6-13, 11-8, 11-52

FILE command 2-11, 2-15, 6-6, 11-22
effect on debugging modes 3-5
effect on FILE window 3-9
menu selection 11-8

FILE window 2-11, 2-15, 3-6, 3-9, 6-2, 6-4, 6-6
colors 9-5
customizing 9-5
definition C-4

file/load commands 11-5
ADDR command 6-5, 6-7, 6-10, 11-11
CALLS command 3-10, 3-11, 6-7, 11-15
DASM command 6-5, 6-10, 11-18
FILE command 2-11, 2-15, 6-6, 11-22
FUNC command 2-15, 6-6, 11-23
LOAD command 2-4, 6-8, 11-24
menu selections 11-8
RELOAD command 6-8, 11-32
RESTART command 2-17, 11-32
SLOAD command 6-8, 11-38

files
log files 4-6, 11-20
saving memory to a file 7-9, 11-29

FILL command 7-9, 11-22
menu selection 11-9

floating point
display format 2-25 to 2-30, 3-17
operations 12-4

FUNC command 2-15, 6-6, 11-23
effect on debugging modes 3-5
effect on FILE window 3-9

function calls
displaying functions 11-23

keyboard method 3-11
mouse method 3-11

executing function only 11-33, 11-34
in expressions 7-5, 12-4
stepping over 11-16, 11-29
tracking in CALLS window 3-10 to 3-32, 6-7,

11-15

G
–g shell option 1-10, 1-11, 10-2
GO command 2-12, 6-11, 11-23
grouping/reference operators 12-2

H
halting

batch file execution 4-13
debugger 1-15, 2-30, 11-32
program execution 1-15, 2-16, 6-10, 6-15,

11-32
function key method 6-15, 11-51
mouse method 6-15

hexadecimal notation
addresses 7-7
data formats 7-17

history, of commands 4-5
home key, scrolling 3-30, 11-53

I
–i debugger option 1-14, 6-9
I/O memory

adding to memory map 11-25
deleting from memory map 11-26

IF/ELSE/ENDIF commands 4-14 to 4-20, 11-23
conditions 4-16, 11-23
predefined constants 4-15

increment operator 12-3
index numbers, for data in WATCH window 3-18,

7-16
indirection operator (*) 7-8, 7-15
init.clr file 9-9, 9-10, 11-35, A-1
init.cmd file 5-2, A-1

definition C-4
initialization batch files 5-2 to 5-10, A-1

init.cmd 5-2, A-1
naming an alternate file 1-15

integer
display format 3-17
SETF command 7-17

invalid memory addresses 5-3, 5-8
invoking

custom displays 9-11
debugger 1-12 to 1-15, 2-3
shell program 1-11

Index

Index-8

ISA, definition C-4

K
key sequences

displaying functions 11-54
displaying previous commands (command histo-

ry) 11-50
editing

command line 4-3, 11-50
data values 3-31, 11-54

halting actions 11-51
menu selections 11-51
moving a window 3-28, 11-52
opening additional DISP windows 11-54
running code 11-52
scrolling 3-30, 11-53
selecting the active window 3-22, 11-52
setting/clearing software breakpoints 11-54
single stepping 6-13
sizing a window 3-25, 11-52
switching debugging modes 11-51

L
labels, for data in WATCH window 2-18, 3-18, 7-15

limits
breakpoints 8-2
file size 6-7
open DISP windows 3-17
paths 6-9
window positions 3-28, 11-28
window sizes 3-25, 11-37

linker 1-9, 1-10

LOAD command 2-4, 6-8, 11-24
effect on DISP window 7-13
effect on WATCH window 7-16

load/file commands 11-5
ADDR command 6-5, 6-7, 6-10, 11-11
CALLS command 3-10, 3-11, 6-7, 11-15
DASM command 6-5, 6-10, 11-18
FILE command 2-11, 2-15, 6-6, 11-22
FUNC command 2-15, 6-6, 11-23
LOAD command 2-4, 6-8, 11-24
menu selections 11-8
RELOAD command 6-8, 11-32
RESTART command 2-17, 11-32
SLOAD command 6-8, 11-38

loading
batch files 4-13
COFF files, restrictions 5-3
custom displays 9-10
object code 2-3, 6-8

after invoking the debugger 6-8
symbol table only 6-8, 11-38
while invoking the debugger 1-12, 6-8
without symbol table 6-8, 11-32

log files 4-6, 11-20

logical operators 12-2
conditional execution 6-14

LOOP/ENDLOOP commands 4-15 to 4-20, 11-24
conditions 4-16, 11-24

looping commands 4-15 to 4-20, 11-24

M
MA command 2-29, 5-4, 5-5, 5-10, 11-25

menu selection 11-9

managing data 7-1 to 7-19
basic commands 7-2 to 7-3

MAP command 5-8, 11-25
menu selection 11-9

mapping. See memory, mapping

marking areas 10-5 to 10-22

MC command, menu selection 11-9

MD command 2-29, 5-10, 11-26
menu selection 11-9

MEM command 2-5, 3-13, 3-14, 3-15, 7-6, 11-26 to
11-27
display formats 2-27, 7-19, 11-26
effect on debugging modes 3-5

memory
batch file search order 5-2, A-1
commands 11-5

FILL command 7-9, 11-22
menu selections 11-9
MS command 7-9, 11-29

data formats 7-17
data memory 2-29
default map 2-29, 5-4
displaying in different numeric format 2-25 to

2-30, 7-8
filling 7-9, 11-22
invalid addresses 5-3
invalid locations 5-8

 Index

Index-9

memory (continued)
map

adding ranges 11-25
defining 5-2 to 5-10

interactively 5-2
definition C-4
deleting ranges 11-26
modifying 5-2 to 5-10
potential problems 5-3
resetting 11-29

mapping 2-29, 2-30, 5-1 to 5-10
adding ranges 5-5
commands 11-5

MA command 2-29, 5-4, 5-5, 5-10, 11-25
MAP command 5-8, 11-25
MD command 2-29, 5-10, 11-26
menu selections 11-9
ML command 2-29, 5-9, 11-27
MR command 5-10, 11-29

deleting ranges 5-10
disabling 5-8
listing current map 5-9
modifying 5-10
resetting 5-10
returning to default 5-10

nonexistent locations 5-2
program memory 2-29
protected areas 5-3, 5-8
saving 7-9, 11-29
simulating, ports, menu selections 11-9
undefined areas 5-3, 5-8
valid types 5-5

MEMORY window 2-5, 3-6, 3-13 to 3-32, 7-2,
7-6 to 7-9, 11-26 to 11-27
additional MEMORY windows 3-14 to 3-15
address columns 3-13
closing 3-15
colors 9-6
customizing 9-6
data columns 3-13
definition C-4
displaying

different memory range 3-14
memory contents 7-6 to 7-20

editing memory contents 7-4
modifying display 11-26 to 11-27
opening additional windows 3-14, 3-15

memory-map commands
See also memory, mapping, commands
menu selections 11-9

menu bar 2-4, 4-7
customizing its appearance 9-7
definition C-4
items without menus 4-10
using menus 4-7 to 4-10

menu selections 4-7, 11-8 to 11-9
colors 9-7
customizing their appearance 9-7
definition (pulldown menu) C-5
entering parameter values 4-11 to 4-13
escaping 4-9
function key methods 4-9, 11-51
list of menus 4-7
mouse methods 4-8 to 4-9
moving to another menu 4-9
profiling 4-8, 10-4
usage 4-8 to 4-9

messages B-1 to B-17
MI command, menu selection 11-9

–min debugger option 1-14
MINIMAL command 2-14, 6-3, 11-27

menu selection 6-3, 11-9
minimal mode 2-12 to 2-14, 3-5, 6-2

definition C-4
–min option 1-14
MINIMAL command 2-14, 6-3, 11-27
selection 6-3

MIX command 2-14, 6-3, 11-27
menu selection 6-3, 11-9

mixed mode 2-12 to 2-14, 3-4, 6-2
definition C-4
MIX command 2-14, 6-3, 11-27
selection 6-3

ML command 2-29, 5-9, 11-27
menu selection 11-9

modes. See debugging modes

modifying
colors 9-2 to 9-7
command line 4-3
command-line prompt 9-12
data values 7-4
memory map 5-2 to 5-10
window borders 9-8

mono.clr file 9-9
monochrome monitors 9-9

mouse, cursor 3-20
MOVE command 2-9, 3-27, 11-28 to 11-29

effect on entering other commands 4-4

Index

Index-10

moving a window 3-27 to 3-32, 11-28 to 11-29
function key method 2-9, 3-28, 11-52
mouse method 2-9, 3-27
MOVE command 2-9, 3-27
XY screen limits 3-28, 11-28

MR command 5-10, 11-29
menu selection 11-9

MS command 7-9, 11-29
menu selection 11-9

N
natural format 2-25 to 2-30, 12-5

NEXT command 2-19, 6-13, 11-29
from the menu bar 4-10
function key entry 4-10, 11-52

nonexistent memory locations 5-2

O
object files

creating 6-8
loading 1-12, 11-24

after invoking the debugger 6-8
symbol table only 1-14, 11-38
while invoking the debugger 1-12, 2-3, 6-8
without symbol table 6-8, 11-32

operators 12-2 to 12-3
& operator 7-7
* operator (indirection) 7-8, 7-15
side effects 7-5

overwrite editing 7-4 to 7-20

P
page-up/page-down keys, scrolling 3-30, 11-53

parameters
cl60 shell 1-11
entering in a dialog box 4-11 to 4-13
sim6x command 1-12

PAUSE command 11-30

PC 6-10
definition C-4
finding the current PC 3-8

PF command 10-15, 11-30
effect on PROFILE window 3-12

pointers
displaying/modifying contents 2-23, 7-11
format in DISP window 2-23, 3-17, 7-12, 11-18
natural format 12-5
typecasting 12-5

pointing, definition C-4

PQ command 10-15, 11-31
effect on PROFILE window 3-12

PR command 10-16, 11-31

–profile debugger option 1-14

PROFILE window 3-6, 3-12, 10-17 to 10-21
associated code 10-21
data accuracy 10-19
displaying areas 10-19 to 10-22
displaying different data 10-17 to 10-22
sorting data 10-19

profiling 10-1 to 10-22
areas

disabling marked areas 11-46 to 11-47
enabling disabled areas 11-47
marking 11-46
unmarking 11-48

changing display 11-49
collecting statistics

full statistics 10-15, 11-30
subset of statistics 10-15, 11-31

commands 11-7
PF command 10-15, 11-30
PQ command 10-15, 11-31
PR command 10-16, 11-31
SA command 10-14, 11-33
SD command 10-14, 11-35
SL command 10-14, 11-37
SR command 10-14, 11-38
summary 11-46 to 11-49
VAA command 10-22, 11-41
VAC command 10-22, 11-41
VR command 11-42

compiling a program for profiling 10-2
defining areas 10-5 to 10-12

disabling areas 10-7 to 10-22
function key method 10-9

enabling areas 10-10 to 10-22
function key method 10-10

marking areas 10-5 to 10-22
function key method 10-7
mouse method 10-6

restrictions 10-12 to 10-22

 Index

Index-11

profiling, defining areas (continued)
unmarking areas 10-11 to 10-22

function key method 10-12
mouse method 10-11

description 1-5 to 1-6
entering environment 10-3
key features 1-5 to 1-6
menu selections 4-8, 10-4
overview 10-2
resetting PROFILE window 11-42
restrictions

available windows 10-3
batch files 10-3
breakpoints 10-3
commands 10-3
modes 10-3

resuming a session 10-16, 11-31
running a session 10-15 to 10-16

full 10-15, 11-30
quick 10-15, 11-31

saving data to a file 10-22
saving statistics

all views 10-22, 11-41
current view 10-22, 11-41

stopping points 10-13 to 10-14
adding 10-14, 11-33
command method 10-14
deleting 10-14, 11-35, 11-38
listing 10-14, 11-37
mouse method 10-13
resetting 10-14, 11-38

strategy 10-2
viewing data 10-17 to 10-21

associated code 10-21
data accuracy 10-19
displaying areas 10-19 to 10-22
displaying different data 10-17 to 10-22
sorting data 10-19

program
debugging 1-16
entry point 6-10

resetting 11-32
execution, halting 1-15, 2-16, 6-10, 6-15, 11-32,

11-51
preparation for debugging 1-10 to 1-11

program counter (PC) 7-10

program memory
adding to memory map 11-25
deleting from memory map 11-26
filling 7-9, 11-22
saving 7-9, 11-29

PROMPT command 9-12, 11-31
menu selection 11-9

pulldown menus
See also menu selections
definition C-5

Q
QUIT command 1-15, 2-30, 11-32

R
recording COMMAND window displays 4-6, 11-20
reentering commands 4-5, 11-50
registers

displaying/modifying 7-10
program counter (PC) 7-10
referencing by name 12-4

relational operators 12-2
conditional execution 6-14

relative pathnames 6-9
RELOAD command 6-8, 11-32

menu selection 11-8
repeating commands 4-5, 11-50
RESET command 2-4, 6-14, 11-32

menu selection 11-8
resetting

memory map 11-29
program entry point 11-32
target system 2-4, 6-14, 11-32

RESTART (REST) command 2-17, 6-10, 11-32
menu selection 11-8

restrictions
See also limits
breakpoints 8-2
C expressions 12-4
debugging modes 3-5
profiling environment 10-3
SSAVE command 9-11

Index

Index-12

RETURN (RET) command 6-11, 11-33

RUN command 2-16, 6-11, 11-33
from the menu bar 4-10
function key entry 4-10, 6-11, 11-52
menu bar selections 4-10
with conditional expression 2-20

run commands 11-6
CNEXT command 6-13, 11-16
conditional parameters 2-20
CSTEP command 2-19, 6-13, 11-17
GO command 2-12, 6-11, 11-23
menu bar selections 4-10, 11-8, 11-52
NEXT command 2-19, 6-13, 11-29
RESET command 2-4, 6-14
RESTART command 2-17, 6-10
RETURN command 6-11, 11-33
RUN command 2-16, 6-11, 11-33
STEP command 2-19, 6-12, 11-39

running programs 6-10 to 6-14
conditionally 6-14
halting execution 6-15
program entry point 6-10 to 6-14
while disconnected from the target system 6-14

S
–s debugger option 1-14, 6-8

SA command 10-14, 11-33
SAFEHALT command 11-34

saving custom displays 9-10
scalar type, definition C-5

SCOLOR command 9-2, 11-34 to 11-35
menu selection 11-9

SCONFIG command 9-10, 11-35
menu selection 11-9
restrictions 9-11

screen-customization commands 11-5
BORDER command 9-8, 11-14
COLOR command 9-2, 11-16 to 11-17
menu selections 11-9
PROMPT command 9-12, 11-31
SCOLOR command 9-2, 11-34 to 11-35
SCONFIG command 9-10, 11-35
SSAVE command 9-10, 11-39

scrolling 2-10, 3-29 to 3-32
definition C-5
function key method 2-10, 3-30, 11-53
mouse method 2-10, 3-29 to 3-30, 7-7

SD command 10-14, 11-35

SETF command 2-26 to 2-30, 7-17 to 7-20,
11-36 to 11-37

shell program 1-11

side effects 7-5, 12-3
definition C-5
valid operators 7-5

$$SIM$$ constant 4-15

sim6x command 1-12, 2-3
options 1-12

–b 1-13
–c 1-13
–d 1-13
–i 1-14, 6-9
–min 1-14
–profile 1-14, 10-3
–s 1-14, 6-8
–t 1-15
–v 1-15
–x 1-15

simulator
definition C-5
invoking the debugger 1-12 to 1-15, 2-3
$$SIM$$ constant 4-15

single-step
commands

CNEXT command 6-13, 11-16
CSTEP command 2-19, 6-13, 11-17
menu bar selections 4-10
NEXT command 2-19, 6-13, 11-29
STEP command 2-19, 6-12, 11-39

definition C-5
execution 6-12

assembly language code 6-12, 11-39
C code 6-13, 11-17
function key method 6-13, 11-52
mouse methods 6-13
over function calls 6-13, 11-16, 11-29

SIZE command 2-7, 3-25, 11-37
effect on entering other commands 4-4

sizeof operator 12-4

sizes
display 3-28, 11-28
displayable files 6-7
windows 3-25, 11-37

 Index

Index-13

sizing a window 3-24 to 3-32
function key method 2-7, 3-25, 11-52
mouse method 2-7, 3-24
SIZE command 2-7, 3-25
size limits 3-25, 11-37
while moving it 3-28, 11-28 to 11-29

SL command 10-14, 11-37

SLOAD command 6-8, 11-38
effect on DISP window 7-13
effect on WATCH window 7-16
menu selection 11-8
–s debugger option 1-14

software breakpoints. See breakpoints (software)

SOUND command 11-38, B-2

SR command 10-14, 11-38

SSAVE command 9-10, 11-39
menu selection 11-9

STEP command 2-19, 6-12, 11-39
from the menu bar 4-10
function key entry 4-10, 11-52

stopping points 10-13 to 10-14
adding 10-14, 11-33
deleting 10-14, 11-35, 11-38
listing 10-14, 11-37
resetting 10-14, 11-38

structures
direct reference operator 12-2
displaying/modifying contents 7-11
format in DISP window 2-24, 7-12, 11-18
indirect reference operator 12-2

symbol table
definition C-5
loading without object code 1-15, 6-8, 11-38

symbolic addresses 7-7

system command, SAFEHALT command 11-34

system commands 11-4
ALIAS command 2-30, 4-17 to 4-20, 11-12
CD command 2-22
CLS command 2-22, 4-5, 11-15
DIR command 2-22
DLOG command 4-6 to 4-20, 11-20
ECHO command 4-14, 11-21
IF/ELSE/ENDIF commands 4-14 to 4-20, 11-23

conditions 4-16, 11-23
predefined constants 4-15

LOOP/ENDLOOP commands 4-15 to 4-20,
11-24
conditions 4-16, 11-24

system commands (continued)
PAUSE command 11-30
QUIT command 1-15, 2-30, 11-32
RESET command 2-4, 11-32
SOUND command 11-38, B-2
TAKE command 4-13, 5-10, 11-40
UNALIAS command 4-18, 11-40
USE command 6-9, 11-41

T
–t debugger option 1-15

during debugger invocation 5-2, A-1

TAKE command 4-13, 5-10, 11-40
executing log file 4-6

target system
memory definition for debugger 5-1 to 5-10
resetting 2-4, 11-32

terminating the debugger 1-15, 11-32

text files, displaying 2-15, 6-7

tutorial, introductory 2-1 to 2-30

type casting 2-25 to 2-30, 12-4

type checking 2-21, 7-2

U
UNALIAS command 4-18, 11-40

unmarking areas 10-11 to 10-22

USE command 6-9, 11-41

V
–v debugger option 1-15

VAA command 10-22, 11-41

VAC command 10-22, 11-41

variables
aggregate values in DISP window 2-22 to 2-30,

3-17, 7-11 to 7-13, 11-18 to 11-22
determining type 7-2
displaying in different numeric format 2-25 to

2-30, 12-5
displaying/modifying 7-14 to 7-16
scalar values in WATCH window 3-18, 7-14 to

7-16

VGA, definition C-5

Index

Index-14

viewing profile data 10-17 to 10-21
associated code 10-21
data accuracy 10-19
displaying areas 10-19 to 10-22
displaying different data 10-17 to 10-22
sorting data 10-19

void expressions 12-4

VR command 11-42

W
WA command 2-18 to 2-19, 3-18, 4-11, 7-10, 7-15,

11-42 to 11-43
display formats 2-26 to 2-30, 7-19, 11-42
menu selection 11-9

watch commands
menu selections 11-9
pulldown menu 7-14
WA command 2-18 to 2-19, 4-11, 7-10, 7-15,

11-42 to 11-43
WD command 2-20, 7-16, 11-43
WR command 2-21, 7-16, 11-44

WATCH window 2-18 to 2-19, 3-6, 3-18, 7-2,
7-14 to 7-16, 11-42 to 11-43, 11-44
adding items 7-15, 11-42 to 11-43
closing 2-21, 3-32, 7-16, 11-44
colors 9-6
customizing 9-6
definition C-5
deleting items 7-16, 11-43
editing values 7-4
effects of LOAD command 7-16
effects of SLOAD command 7-16
labeling watched data 7-15, 11-42 to 11-43
opening 7-15, 11-42 to 11-43

WD command 2-20, 3-18, 7-16, 11-43
menu selection 11-9

WHATIS command 2-21, 7-2, 11-43

WIN command 2-5 to 2-6, 3-22, 11-44

window commands 11-3
See also windows, commands
WIN command 2-5 to 2-6

windows 3-6 to 3-19
active window 3-21 to 3-23
border styles 9-8, 11-14
CALLS window 2-12, 3-6, 3-10 to 3-32, 6-2, 6-7
closing 3-32
COMMAND window 3-6, 3-7, 4-2

windows (continued)
commands

MOVE command 2-9, 3-27
SIZE command 2-7, 3-25, 11-37
WIN command 2-5 to 2-6, 3-22, 11-28 to

11-29, 11-44
ZOOM command 2-8, 3-26, 11-45

CPU window 3-6, 3-16, 7-2, 7-10
definition C-5
DISASSEMBLY window 2-5, 3-6, 3-8, 6-2, 6-4
DISP window 2-22 to 2-30, 3-6, 3-17, 7-2,

7-11 to 7-13
editing 3-31
FILE window 2-15, 3-6, 3-9, 6-2, 6-4, 6-6
MEMORY window 2-5, 3-6, 3-13 to 3-32, 7-2,

7-6 to 7-9
moving 2-9, 3-27 to 3-32, 11-28 to 11-29

function keys 3-28, 11-52
mouse method 3-27
MOVE command 3-27
XY positions 3-28, 11-28

PROFILE window 3-6, 3-12
resizing 2-7, 3-24 to 3-32

function keys 3-25, 11-52
mouse method 3-24
SIZE command 3-25
size limits 3-25
while moving 3-28, 11-28 to 11-29

scrolling 2-10, 3-29 to 3-32
size limits 3-25
WATCH window 2-18, 3-6, 3-18, 7-2, 7-14 to

7-16
zooming 2-8, 3-26 to 3-32

WR command 2-21, 3-18, 7-16, 11-44
menu selection 11-9

X
–x debugger option 1-15
X Window System, displaying debugger on a differ-

ent machine 1-13

Z
–z shell option 1-11
ZOOM command 2-8, 3-26, 11-45
zooming a window 3-26 to 3-32

mouse method 2-8, 3-26
ZOOM command 2-8, 3-26, 11-45

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current and complete.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright 1998, Texas Instruments Incorporated

